Integration

partition كِـازراز ا; إزه

$$
\begin{aligned}
& m_{k}=\inf \left\{f(x): x \in\left[x_{k-1}, x_{k}\right]\right\} \\
& \int_{\sim}^{\infty} \\
& M_{k}=\sup \left\{f(x): \quad x \in\left[x_{k-1}, x_{k}\right]\right\} .
\end{aligned}
$$

$$
U(f ; P)=\sum_{k=1}^{n} M_{k}\left(x_{k}-x_{k-1}\right)=\sum_{k=1}^{n} M_{k} \Delta x_{k}
$$

$$
L(f ; P)=\sum_{k=1}^{n} m_{k}\left(x_{k}-x_{k-1}\right)=\sum_{k=1}^{n} m_{k} \Delta x_{k}
$$

1Page رياضى 1 دانشگاه فردوسى استاد امين خسروى
\qquad

$$
L(f ; p) \leqslant U(f ; p) \quad \text {, } p \text {, }
$$

$$
U(p, f) \geqslant U\left(p^{*}, f\right), \quad L(p, f) \leqslant L\left(p^{*}, f\right)
$$

:

$$
\begin{aligned}
& \underline{\int_{a}^{b}} f(x) d x=L(f)=\sup \{L(f ; P): P \in \mathcal{P}\} . \\
& \overline{\int_{a}^{b}} f(x) d x=U(f)=\inf \{U(f ; P): P \in \mathcal{P}\} .
\end{aligned}
$$

o

$$
m(b-a) \leq L(f ; P) \leq U(f ; P) \leq M(b-a) .
$$

$$
\begin{aligned}
& f(x)= \begin{cases}1 & x \in Q \\
0 & x \notin Q\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 6k } k \text { هر } \\
& m_{k}=\inf \left\{f(x): x \in\left[x_{k-1}, x_{k}\right]\right\}=0 \\
& M_{k}=\sup \left\{f(x): x \in\left[x_{1}, x_{k}\right]\right\}=1
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow L(p, f)=0, \quad U(p, f)=\sum_{k=1} M_{k} \Delta x_{k}=\sum_{k=1} \Delta x_{k}=b-a
\end{aligned}
$$

Riemann Sum:
W)

[abb] b

的
,
$S_{P}=\sum_{k=1}^{n} f\left(c_{k}\right) \Delta x_{k}$.
The sum S_{P} is called a Riemann sum for \boldsymbol{f} on the interval $[\boldsymbol{a}, \boldsymbol{b}]$.

$$
\lim _{\|P\| \rightarrow 0} \sum_{k=1}^{n} f\left(c_{k}\right) \Delta x_{k}=I=\int_{a}^{b} f(x) d x . \quad: 1,
$$

When each partition has n equal subintervals, each of width $\Delta x=(b-a) / n$, we will also write

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \sum_{k=1}^{n} f\left(c_{k}\right) \Delta x=I=\int_{a}^{b} f(x) d x .
\end{aligned}
$$

 $u(\rho, f)-L(\rho, f)<\varepsilon$

.

1. Order of Integration: $\int_{b}^{a} f(x) d x=-\int_{a}^{b} f(x) d x$
2. Zero Width Interval: $\int_{a}^{a} f(x) d x=0$

Also a Definition
3. Constant Multiple: $\int_{a}^{b} k f(x) d x=k \int_{a}^{b} f(x) d x$

Any Number k

$$
\int_{a}^{b}-f(x) d x=-\int_{a}^{b} f(x) d x \quad k=-1
$$

4. Sum and Difference: $\int_{a}^{b}(f(x) \pm g(x)) d x=\int_{a}^{b} f(x) d x \pm \int_{a}^{b} g(x) d x$
5. Additivity:
$\int_{a}^{b} f(x) d x+\int_{b}^{c} f(x) d x=\int_{a}^{c} f(x) d x$
6. Max-Min Inequality: If f has maximum value $\max f$ and minimum value $\min f$ on $[a, b]$, then

$$
\min f \cdot(b-a) \leq \int_{a}^{b} f(x) d x \leq \max f \cdot(b-a)
$$

7. Domination:

$$
\begin{aligned}
& f(x) \geq g(x) \text { on }[a, b] \Rightarrow \int_{a}^{b} f(x) d x \geq \int_{a}^{b} g(x) d x \\
& f(x) \geq 0 \text { on }[a, b] \Rightarrow \int_{a}^{b} f(x) d x \geq 0 \quad \text { (Special Case) }
\end{aligned}
$$

-
ō $[a, b], h(x)=\phi(f(x))$, ,

位

Area Under a Curve as a Definite Integral

- Loo بر $\int_{0}^{b} f(x) d x \cdot b_{i=1}^{1 / 2} l$

Compute $\int_{0}^{b} x d x$
بارْ0

$$
\Delta x=(b-0) / n=\frac{b}{n}
$$

$$
\begin{aligned}
& P=\left\{0, \frac{b}{n}, \frac{2 b}{n}, \frac{3 b}{n}, \cdots, \frac{n b}{n}\right\} \text { and } c_{k}=\frac{k b}{n} \cdot \text { So } \\
& \begin{aligned}
\sum_{k=1}^{n} f\left(c_{k}\right) \Delta x=\sum_{k=1}^{n} \frac{k b}{n} \cdot \frac{b}{n} & =\sum_{k=1}^{n} \frac{k b^{2}}{n^{2}}=\frac{b^{2}}{n^{2}} \sum_{k=1}^{n} k=\frac{b^{2}}{n^{2}} \cdot \frac{n(n+1)}{2} \\
& =\frac{b^{2}}{2}\left(1+\frac{1}{n}\right)
\end{aligned}
\end{aligned}
$$

$$
=\operatorname{lu} \operatorname{sen}^{-p} p=\frac{b^{2}}{2}\left(1+\frac{1}{n}\right)
$$

As $n \rightarrow \infty$ and $\|P\| \rightarrow 0$, this last expression on the right has the limit $b^{2} / 2$. Therefore,

$$
\int_{0}^{b} x d x=\frac{b^{2}}{2} .
$$

DEFINITION The Average or Mean Value of a Function

If f is integrable on $[a, b]$, then its average value on $[a, b]$, also called its mean value, is

$$
\operatorname{av}(f)=\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

$$
\frac{f\left(c_{1}\right)+f\left(c_{2}\right)+\cdots+f\left(c_{n}\right)}{n}=\frac{1}{n} \sum_{k=1}^{n} f\left(c_{k}\right)=\frac{\Delta x}{b-a} \sum_{k=1}^{n} f\left(c_{k}\right)=\frac{1}{b-a} \sum_{k=1}^{n} f\left(c_{k}\right) \Delta x
$$

 $\|P\| \rightarrow 0$

Find the average value of $f(x)=\sqrt{4-x^{2}}$ on $[-2,2]$.

$$
A v(f)=\frac{2 \pi}{4}=\frac{\pi}{2}
$$

3. $\lim _{\|P\| \rightarrow 0} \sum_{k=1}\left(c_{k}^{2}-3 c_{k}\right) \Delta x_{k}$, where P is a partition of $[-7,5] \rightarrow \int_{-7}^{5}\left(x^{2}-3 x\right) d x$
4. $\lim _{\|P\| \rightarrow 0} \sum_{k=1}^{n}\left(\frac{1}{c_{k}}\right) \Delta x_{k}$, where P is a partition of $[1,4]$

$$
\begin{gathered}
\int_{\mathrm{a}}^{\mathrm{b}} \mathrm{f}(\mathrm{x}) \mathrm{dx}=\lim _{\mathrm{n} \rightarrow \infty} \frac{\mathrm{~b}-\mathrm{a}}{\mathrm{n}} \sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{f}\left(\mathrm{a}+\frac{\mathrm{k}(\mathrm{~b}-\mathrm{a})}{\mathrm{n}}\right) \\
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} f\left(\frac{i}{n}\right)=\int_{0}^{1} f(x) d x \\
\lim _{n \rightarrow \infty} \frac{\sqrt{1}+\sqrt{r}+\cdots+\sqrt{n}}{n^{\frac{r}{r}}}=\lim _{n \rightarrow \infty} \frac{\sqrt{1}+\sqrt{2}+\cdots+\sqrt{n}}{n \sqrt{n}}=\lim _{n \rightarrow \infty} \frac{1}{n}\left(\sqrt{\frac{1}{n}}+\sqrt{\frac{2}{n}}+\cdots+\sqrt{\frac{n}{n}}\right) \\
\lim _{n \rightarrow \infty} \frac{1}{n} \sum \sqrt{i / n}=\int_{0}^{1} \sqrt{x} d x=\left.\frac{2}{3} x \sqrt{x}\right|_{0} ^{1}=\frac{2}{3}
\end{gathered}
$$

The Fundamental Theorem of Calculus Part 1
If f is continuous on $[a, b]$ then $F(x)=\int_{a}^{x} f(t) d t$ is continuous on $[a, b]$ and differentiable on (a, b) and its derivative is $f(x)$;

$$
\begin{aligned}
F^{\prime}(x) & =\frac{d}{d x} \int_{a}^{x} f(t) d t=f(x) . \\
\frac{d}{d x} \int_{a}^{x} \cos t d t & =\cos x
\end{aligned}
$$

$$
\begin{gathered}
\overline{d x} \int_{a} \cos t d t=\cos x \\
\frac{d y}{d x} \text { if } y=\int_{x}^{5} 3 t \sin t d t=-\int_{5}^{x} 3 t \sin t \Rightarrow y^{\prime}=-3 x \sin x \\
\frac{d y}{d x} \text { if } y=\int_{1}^{x^{2}} \cos t d t \stackrel{u=x^{2}}{\Rightarrow} \frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}=\frac{d}{d u}\left(\int_{1}^{u} \cos t d t\right) \frac{d u}{d x} \\
=\cos u \cdot 2 x=2 x \cos x^{2}
\end{gathered}
$$

ت تَ

$$
\frac{d}{d x} \int_{h(x)}^{g(x)} f(t) d t=g^{\prime}(x) f(g(x))-h^{\prime}(x) f(h(x))
$$

$$
\begin{aligned}
& =\lim _{x \rightarrow 0} \frac{\sin \left(x^{3}\right)}{4 x^{3}}=\frac{1}{4} \\
& \text { با فرض } \\
& F^{\prime}(x)=\frac{1}{\sqrt{1-x^{2}}} \Rightarrow F(x)=\sin ^{-1} x+c \cdot F(1)=0 \Rightarrow \\
& \sin ^{-1}(1)+c=0 \Rightarrow c=-\frac{\pi}{2} \Rightarrow F(x)=\sin ^{-1} x-\frac{\pi}{2}=-\cos ^{-1} x \\
& y=-\cos ^{-1} x \Rightarrow-y=\cos ^{-1} x \Rightarrow \cos (-y)=x \\
& \left.\Rightarrow F^{-1}(x)=\cos (x) \Rightarrow F^{-1}\right)^{\prime}(x)=-\sin x \\
& \left(f^{-1}\right)^{\prime}(0)=\frac{1}{f^{\prime}\left(f^{-1}(0)\right)}=\frac{1}{f^{\prime}(0)}=1
\end{aligned}
$$

THEOREM 4 (Continued) The Fundamental Theorem of Calculus Part 2
If f is continuous at every point of $[a, b]$ and F is any antiderivative of f on $[a, b]$, then

$$
\begin{aligned}
& \int_{a}^{b} f(x) d x=F(b)-F(a) .
\end{aligned}
$$

$$
\begin{aligned}
& \int_{1}^{2} 2 x d x=\left.x^{2}\right|_{1} ^{2}=4-1=3 \\
& \text { - il } F(x)=x^{2}+c \text { (2 } 0^{2}-\frac{1}{1} \\
& \text { نَ }
\end{aligned}
$$

$$
\begin{aligned}
& \int d x=x+c / \int_{1}^{2} \operatorname{tg}^{-1}(\cos (\sin z)) d x=\operatorname{tg}^{-1}(\cos (\sin z)) \\
& \int x^{n} d x=\frac{x^{n+1}}{n+1}+c \\
& \int \sqrt{x} d x=\frac{2}{3} x \sqrt{x}+c \quad \int \frac{1}{\sqrt{x}} d x=2 \sqrt{x}+c
\end{aligned}
$$

كَ
THEOREM 5 The Substitution Rule
If $u=g(x)$ is a differentiable function whose range is an interval I and f is continuous on I, then

THEOREM 5 The Substitution Rule
If $u=g(x)$ is a differentiable function whose range is an interval I and f is contenuous on I, then

$$
\int f(g(x)) g^{\prime}(x) d x=\int f(u) d u .
$$

The Power Rule in Integral Form

$$
\begin{aligned}
& \int\left(u^{n} d u x\right) d x=\frac{u^{n+1}}{n+1}+c . \\
& \int 2 x\left(x^{2}+1\right)^{5} d x=\frac{\left(x^{2}+1\right)^{6}}{6}+c \\
& \int \sqrt{1+y^{2}} \cdot 2 y d y=\frac{2}{3}\left(1+y^{2}\right) \sqrt{1+y^{2}}+c \\
& \int \sqrt{4 t-1} d t=4^{-1} \int 4 \sqrt{4 t-1} d t=\frac{1}{4}\left(\frac{2}{3}(4 t-1) \sqrt{4 t-1}\right)+c \\
& \int \frac{2 z d z}{\sqrt[3]{z^{2}+1}}=\int 2 z\left(z^{2}+1\right)^{\frac{1}{3}} d z=\frac{\left(z^{2}+1\right)^{-\frac{1}{3}}+1}{-\frac{1}{3}+1}+c \\
& \int u^{\prime} \cos u d x=\sin u+c \\
& \int u^{\prime} \sin u d x=-\cos a+c \\
& \int \cos (7 \theta+5) d \theta=\frac{1}{7} \sin (7 \theta+5)+c \\
& \int x^{2} \sin \left(x^{3}\right) d x=\frac{1}{3} \int 3 x^{2} \sin \left(x^{3}\right) d x=\frac{-1}{3} \cos \left(x^{3}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \int \sin ^{2} x d x=\int \frac{1}{2} d x-\frac{1}{2} \int \cos 2 x d x=\frac{1}{2} x-\frac{1}{4} \sin 2 x+c \\
& \int \sin 5 x \cos 7 x d x=\frac{1}{2}\left[\int(\sin (12 x)-\sin (2 x)) d x\right. \\
& =\frac{1}{2}\left[\frac{-1}{12} \cos 12 x+\frac{1}{2} \cos 2 x\right)+c \\
& \int \frac{d}{d u} \tan u=\sec ^{2} u \quad \int u^{\prime} \sec ^{2} u d x=\tan u+c \\
& \int \frac{1}{\cos ^{2} 2 x} d x=\int \sec ^{2}(2 x) d x=\frac{1}{2} \tan 2 x+c \\
& \int u^{\prime} \tan ^{2} u d x=? \\
& \int \operatorname{tg}^{2} 3 x d x=?
\end{aligned}
$$

C-5
13. $\int \sqrt{3-2 s} d s$
14. $\int(2 x+1)^{3} d x$
15. $\int \frac{1}{\sqrt{5 s+4}} d s$
16. $\int \frac{3 d x}{(2-x)^{2}}$
17. $\int \theta \sqrt[4]{1-\theta^{2}} d \theta$
18. $\int 8 \theta \sqrt[3]{\theta^{2}-1} d \theta$
19. $\int 3 y \sqrt{7-3 y^{2}} d y$
20. $\int \frac{4 y d y}{\sqrt{2 y^{2}+1}}$
21. $\int \frac{1}{\sqrt{x}(1+\sqrt{x})^{2}} d x$
22. $\int \frac{(1+\sqrt{x})^{3}}{\sqrt{x}} d x$
23. $\int \cos (3 z+4) d z$
24. $\int \sin (8 z-5) d z$
25. $\int \sec ^{2}(3 x+2) d x$
26. $\int \tan ^{2} x \sec ^{2} x d x$
27. $\int \sin ^{5} \frac{x}{3} \cos \frac{x}{3} d x$
28. $\int \tan ^{7} \frac{x}{2} \sec ^{2} \frac{x}{2} d x$
29. $\int r^{2}\left(\frac{r^{3}}{18}-1\right)^{5} d r$
30. $\int r^{4}\left(7-\frac{r^{5}}{10}\right)^{3} d r$
31. $\int x^{1 / 2} \sin \left(x^{3 / 2}+1\right) d x$
32. $\int x^{1 / 3} \sin \left(x^{4 / 3}-8\right) d x$
33. $\int \sec \left(v+\frac{\pi}{2}\right) \tan \left(v+\frac{\pi}{2}\right) d v$
34. $\int \csc \left(\frac{v-\pi}{2}\right) \cot \left(\frac{v-\pi}{2}\right) d v$
35. $\int \frac{\sin (2 t+1)}{\cos ^{2}(2 t+1)} d t$
36. $\int \frac{6 \cos t}{(2+\sin t)^{3}} d t$
37. $\int \sqrt{\cot y} \csc ^{2} y d y$ 38. $\int \frac{\sec z \tan z}{\sqrt{\sec z}} d z$
39. $\int \frac{1}{t^{2}} \cos \left(\frac{1}{t}-1\right) d t$
40. $\int \frac{1}{\sqrt{t}} \cos (\sqrt{t}+3) d t$
41. $\int \frac{1}{\theta^{2}} \sin \frac{1}{\theta} \cos \frac{1}{\theta} d \theta$
42. $\int \frac{\cos \sqrt{\theta}}{\sqrt{\theta} \sin ^{2} \sqrt{\theta}} d \theta$
43. $\int\left(s^{3}+2 s^{2}-5 s+5\right)\left(3 s^{2}+4 s-5\right) d s$
44. $\int\left(\theta^{4}-2 \theta^{2}+8 \theta-2\right)\left(\theta^{3}-\theta+2\right) d \theta$
45. $\int t^{3}\left(1+t^{4}\right)^{3} d t$
46. $\int \sqrt{\frac{x-1}{x^{5}}} d x$
47. $\int x^{3} \sqrt{x^{2}+1} d x$
48. $\int 3 x^{5} \sqrt{x^{3}+1} d x$

THEOREM 6 Substitution in Definite Integrals

If g^{\prime} is continuous on the interval $[a, b]$ and f is continuous on the range of g, then

$$
\left.\begin{array}{l}
\int_{a}^{b} f(g(x)) \cdot g^{\prime}(x) d x=\int_{g(a)}^{g(b)} f(u) d u \\
\int_{1}^{3} 2 x\left(x^{2}+1\right)^{3} d x \quad\left\{\begin{array}{l}
u=x^{2}+1 \Rightarrow d u=2 x d x \\
x=3 \Rightarrow u=10
\end{array}\right. \\
=\int_{2}^{10} u^{3} d u=\left.\frac{u^{4}}{4}\right|_{2} ^{10}=? \\
x=1 \Rightarrow u=2
\end{array}\right] \begin{aligned}
& \int_{a}^{b} f(x+1) d x=\int_{a+1}^{b+1} f(x) d x \quad\left\{\begin{array}{l}
u=x+1 \\
d u=d x
\end{array}\right. \\
& \int \frac{u^{\prime}}{\sqrt{a^{2}-u^{2}}} d x=\sin ^{-1} \frac{u}{a}+C ; u^{2}<a^{2}
\end{aligned}
$$

$$
7 \text { usb }
$$

$$
\begin{aligned}
& \int \frac{d x}{\sqrt{r-x^{r}}}=\sin ^{-1} \frac{x}{\sqrt{r}}+c \\
& \int \frac{x d x}{\sqrt{5-x^{r}}}=\frac{1}{2} \int \frac{2 x d x}{\sqrt{4-\left(x^{2}\right)^{2}}}=\frac{1}{2} \sin ^{-1}\left(\frac{x^{2}}{2}\right)+c \\
& \int \frac{\cos x d x}{\sqrt{1-\sin ^{r} x}} d x=\sin ^{-1}(\sin x)=x+c \\
& \int \frac{u^{\prime}}{a^{2}+u^{2}} d x=\frac{1}{a} \tan ^{-1} \frac{a}{a}+c \\
& \int \frac{x d x}{2+x^{4}}=\frac{1}{2}\left(\frac{1}{\sqrt{2}} \tan ^{-1} \frac{x^{2}}{\sqrt{2}}\right)+c
\end{aligned}
$$

$\int \frac{d u}{u \sqrt{u^{2}-a^{2}}}=\frac{1}{a} \sec ^{-1}\left|\frac{u}{a}\right|+C \quad($ Valid for $|u|>a>0)$

$$
\begin{aligned}
& \left.\int_{2 \sqrt{3}}^{\sqrt{2}} \frac{d x}{x \sqrt{x^{2}-1}}=\sec ^{-1} x\right]_{2 \sqrt{3}}^{\sqrt{2}}=\frac{\pi}{4}-\frac{\pi}{6}=\frac{\pi}{12} \quad \sec ^{-1}\left(\frac{2}{\sqrt{3}}\right)=\cos ^{-1}\left(\frac{\sqrt{3}}{2}\right)=\frac{\pi}{6} \\
& \int \frac{d x}{\sqrt{e^{2 x}-6}}=\int \frac{e^{x} d x}{e^{x} \sqrt{e^{2 x}-6}}=\frac{1}{\sqrt{6}} \sec ^{-1}\left|\frac{e^{x}}{\sqrt{6}}\right|+c \\
& \int \frac{u^{\prime}}{4 \sqrt{x^{\prime}-4}} \\
& \sqrt{4 x-x^{2}}
\end{aligned} 4 x-x^{2}=-(x-2)^{2}+4 .
$$

$$
\begin{aligned}
& =\int \frac{d x}{\sqrt{r-(x-r)^{r}}}=\sin ^{-1}\left(\frac{x-r}{r}\right)+c \\
& \int \frac{d x}{4 x^{2}+4 x+2} \quad 4 x^{2}+4 x+2=(2 x+1)^{2}+1 \\
& =\int \frac{d x}{1+(2 x+1)^{2}}=\frac{1}{2} \operatorname{tg}^{-1}(2 x+1)+c \\
& \int \frac{\sin 2 x d x}{1+\sin ^{4} x}=\operatorname{tg}^{-1}\left(\sin ^{2} x\right)+c
\end{aligned}
$$

73. $\int \frac{d x}{17+x^{2}}$
74. $\int \frac{d x}{9+3 x^{2}}$
75. $\int \frac{d x}{x \sqrt{25 x^{2}-2}}$
76. $\int \frac{d x}{x \sqrt{5 x^{2}-4}}$
77. $\int_{0}^{1} \frac{4 d s}{\sqrt{4-s^{2}}}$
78. $\int_{0}^{3 \sqrt{2} / 4} \frac{d s}{\sqrt{9-4 s^{2}}}$
79. $\int_{0}^{2} \frac{d t}{8+2 t^{2}}$
80. $\int_{-2}^{2} \frac{d t}{4+3 t^{2}}$
81. $\int_{-1}^{-\sqrt{2} / 2} \frac{d y}{y \sqrt{4 y^{2}-1}}$
82. $\int_{-2 / 3}^{-\sqrt{2} / 3} \frac{d y}{y \sqrt{9 y^{2}-1}}$
83. $\int \frac{3 d r}{\sqrt{1-4(r-1)^{2}}}$
84. $\int \frac{6 d r}{\sqrt{4-(r+1)^{2}}}$
85. $\int \frac{d x}{2+(x-1)^{2}}$
86. $\int \frac{d x}{1+(3 x+1)^{2}}$
87. $\int \frac{d x}{(2 x-1) \sqrt{(2 x-1)^{2}-4}}$
88. $\int \frac{d x}{(x+3) \sqrt{(x+3)^{2}-25}}$
89. $\int_{-\pi / 2}^{\pi / 2} \frac{2 \cos \theta d \theta}{1+(\sin \theta)^{2}}$
90. $\int_{0}^{\ln \sqrt{3}} \frac{e^{x} d x}{1+e^{2 x}}$
91. $\int \frac{y d y}{\sqrt{1-y^{4}}}$
92. $\int \frac{d x}{\sqrt{-x^{2}+4 x-3}}$
93. $\int_{-1}^{0} \frac{6 d t}{\sqrt{3-2 t-t^{2}}}$
94. $\int \frac{d y}{y^{2}-2 y+5}$
95. $\int_{\pi / 6}^{\pi / 4} \frac{\csc ^{2} x d x}{1+(\cot x)^{2}}$
96. $\int_{1}^{e^{\pi / 4}} \frac{4 d t}{t\left(1+\ln ^{2} t\right)}$
97. $\int \frac{\sec ^{2} y d y}{\sqrt{1-\tan ^{2} y}}$
98. $\int \frac{d x}{\sqrt{2 x-x^{2}}}$
99. $\int_{1 / 2}^{1} \frac{6 d t}{\sqrt{3+4 t-4 t^{2}}}$
100. $\int \frac{d y}{y^{2}+6 y+10}$
101. $\int_{1}^{2} \frac{8 d x}{x^{2}-2 x+2}$
102. $\int_{2}^{4} \frac{2 d x}{x^{2}-6 x+10}$
103. $\int \frac{d x}{(x+1) \sqrt{x^{2}+2 x}}$
104. $\int \frac{d x}{(x-2) \sqrt{x^{2}-4 x+3}}$
105. $\int \frac{e^{\sin ^{-1} x} d x}{\sqrt{1-x^{2}}}$
106. $\int \frac{e^{\cos ^{-1} x} d x}{\sqrt{1-x^{2}}}$
107. $\int \frac{\left(\sin ^{-1} x\right)^{2} d x}{\sqrt{1-x^{2}}}$
108. $\int \frac{\sqrt{\tan ^{-1} x} d x}{1+x^{2}}$
109. $\int \frac{d y}{\left(\tan ^{-1} y\right)\left(1+y^{2}\right)}$
110. $\int_{\sqrt{2}}^{2} \frac{\sec ^{2}\left(\sec ^{-1} x\right) d x}{x \sqrt{x^{2}-1}}$
111. $\int \frac{d y}{\left(\sin ^{-1} y\right) \sqrt{1-y^{2}}}$
112. $\int_{2 / \sqrt{3}}^{2} \frac{\cos \left(\sec ^{-1} x\right) d x}{x \sqrt{x^{2}-1}}$

Natural Logarithms

The Natural Logarithm Function

$$
\uparrow \left\lvert\, \begin{aligned}
& \text { If } 0<x<1, \text { then } \ln x=\int_{1}^{x} \frac{1}{t} d t=-\int_{x}^{1} \frac{1}{t} d t \\
& \text { gives the negative of this area. }
\end{aligned}\right.
$$

$$
\ln x=\int_{1}^{x} \frac{1}{t} d t, \quad x>0
$$

$$
\begin{aligned}
& \text { If } x>1, \text { then } \ln x=\int_{1}^{x} \frac{1}{t} d t \\
& \text { gives this area. }
\end{aligned}
$$

$$
x
$$

$$
y=\frac{1}{x}
$$

نا بر ارلن

$$
\text { If } x=1 \text {, then } \ln x=\int_{1}^{1} \frac{1}{t} d t=0
$$

-

$$
\operatorname{Ln}(e)=1 \quad N
$$

$$
y=\operatorname{Ln} x \quad \text { ot },-\sin
$$

$$
\begin{aligned}
& \frac{d}{d x} \ln u=\frac{1}{u} \frac{d u}{d x}=\frac{u^{\prime}}{u} \quad u>0
\end{aligned}
$$

Properties of Logarithms
(1) $\ln a x=\ln a+\ln x$
$\ln \frac{1}{x}=-\ln x$
(2) $\ln \frac{a}{x}=\ln a-\ln x$
(4) $\ln x^{r}=r \ln x$

沙 $x=1$ 家

$$
\operatorname{Ln}(a)=\operatorname{Ln}(1)+c \Rightarrow c=\operatorname{Ln}(a)
$$

$$
\Rightarrow \operatorname{Ln}(a x)=\operatorname{Ln}(a)+\operatorname{Ln}(x)
$$

$$
\operatorname{Ln} 2>\frac{1}{2} \text { ب }
$$

$$
\ln 2^{n}=n \ln 2>n\left(\frac{1}{2}\right)=\frac{n}{2}
$$

$\ln 2^{-n}=-n \ln 2<-n\left(\frac{1}{2}\right)=-\frac{n}{2}$.

$$
\lim _{x \rightarrow \infty} \ln x=\infty \quad \text { and } \quad \lim _{x \rightarrow 0^{+}} \ln x=-\infty
$$

If u is a differentiable function that is never zero,

$$
\begin{gathered}
\int \frac{1}{u} d u=\ln |u|+C \\
\left.\int \frac{f^{\prime}(x)}{f(x)} d x=\ln |f(x)|+C \quad \int \ln , \int_{-5}^{-1} \frac{d u}{u}=\ln |u|\right]_{-5}^{-1}=\ln |-1|-\ln |-5|=\ln 1-\ln 5=-\ln 5 \\
\int_{0}^{2} \frac{2 x}{x^{2}-5} d x=0 \\
\int_{-\pi / 2}^{\pi / 2} \frac{4 \cos \theta}{3+2 \sin \theta} d \theta=\left.2 \ln |3+2 \sin \theta|\right|_{-\pi / 2} ^{\pi / 2}=? \\
\int \tan x d x=-\ln |\cos x|+c \quad \int \cot x d x=\ln |\sin x|+C
\end{gathered}
$$

$$
\text { Find } d y / d x \text { if } \quad y=\frac{\left(x^{2}+1\right)(x+3)^{1 / 2}}{x-1}, \quad x>1
$$

$$
\ln y=\ln \frac{\left(x^{2}+1\right)(x+3)^{1 / 2}}{x-1}=\ln \left(\left(x^{2}+1\right)(x+3)^{1 / 2}\right)-\ln (x-1)
$$

$$
=\ln \left(x^{2}+1\right)+\ln (x+3)^{1 / 2}-\ln (x-1)=\ln \left(x^{2}+1\right)+\frac{1}{2} \ln (x+3)-\ln (x-1)
$$

$$
\frac{1}{y} \frac{d y}{d x}=\frac{1}{x^{2}+1} \cdot 2 x+\frac{1}{2} \cdot \frac{1}{x+3}-\frac{1}{x-1}
$$

$$
\frac{d y}{d x}=y\left(\frac{2 x}{x^{2}+1}+\frac{1}{2 x+6}-\frac{1}{x-1}\right) .
$$

$$
\frac{d y}{d x}=\frac{\left(x^{2}+1\right)(x+3)^{1 / 2}}{x-1}\left(\frac{2 x}{x^{2}+1}+\frac{1}{2 x+6}-\frac{1}{x-1}\right) .
$$

37. $\int_{-3}^{-2} \frac{d x}{x}$
38. $\int_{-1}^{0} \frac{3 d x}{3 x-2}$
39. $\int \frac{2 y d y}{y^{2}-25}$
40. $\int \frac{8 r d r}{4 r^{2}-5}$
41. $\int_{0}^{\pi} \frac{\sin t}{2-\cos t} d t$
42. $\int_{0}^{\pi / 3} \frac{4 \sin \theta}{1-4 \cos \theta} d \theta$
43. $\int_{1}^{2} \frac{2 \ln x}{x} d x$
44. $\int_{2}^{4} \frac{d x}{x \ln x}$
45. $\int_{2}^{4} \frac{d x}{x(\ln x)^{2}}$
46. $\int_{2}^{16} \frac{d x}{2 x \sqrt{\ln x}}$
47. $\int \frac{3 \sec ^{2} t}{6+3 \tan t} d t$
48. $\int \frac{\sec y \tan y}{2+\sec y} d y$
49. $\int_{0}^{\pi / 2} \tan \frac{x}{2} d x$
50. $\int_{\pi / 4}^{\pi / 2} \cot t d t$
51. $\int_{\pi / 2}^{\pi} 2 \cot \frac{\theta}{3} d \theta$
52. $\int_{0}^{\pi / 12} 6 \tan 3 x d x$
53. $\int \frac{d x}{2 \sqrt{x}+2 x}$
54. $\int \frac{\sec x d x}{\sqrt{\ln (\sec x+\tan x)}}$
$\int \frac{x^{r}}{x^{r}+1} d x=\int \frac{x^{r}+1-1}{x^{r}+1} d x=\int\left(1-\frac{1}{x^{r}+1}\right) d x=x-\tan ^{-1} x+c$
$\int \frac{x^{2}-1}{x\left(x^{2}+1\right)} d x=\int \frac{x}{x^{2}+1} d x-\int \frac{d x}{x\left(x^{2}+1\right)}=2 \int \frac{x}{x^{2}+1} d x-\int \frac{1}{x} d x$

$$
\int \frac{d x}{x}-\int \frac{x}{x^{2}+1} d x=\ln \left(x^{r}+1\right)-\operatorname{Ln}|x|+c
$$

The Inverse of $\ln x$ and the Number e

$$
\begin{aligned}
& \text { (~) } \\
& 1 n^{-1}-\mathbb{R}-D^{>0} 1 \text { - } 1 . \text { wher } 11.1 .
\end{aligned}
$$

$$
\begin{aligned}
& \text { 8- } \quad L_{n}^{-1}: \mathbb{R} \rightarrow \mathbb{R}^{>0} \text {. - }
\end{aligned}
$$

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \ln ^{-1} x=\infty \quad \text { and } \quad \lim _{x \rightarrow-\infty} \ln ^{-1} x=0 .
\end{aligned}
$$

$$
\begin{aligned}
& e=2.718281828459045 \text {. } \\
& \text { باستَادها زا } \\
& e=2.718281828459045 . \\
& \text { - Ln cutter cr }
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Let} x \in \mathbb{R} \Rightarrow e^{x}>0 \Rightarrow \operatorname{Ln} e^{x}=x \operatorname{Ln} e=x \\
& \text { (1) } \\
& \operatorname{Ln}^{-1}(x)=\operatorname{Exp}(x)=e^{x}
\end{aligned}
$$

Inverse Equations for e^{x} and $\ln x$

$$
e^{\ln x}=x \quad(\text { all } x>0) \quad \ln \left(e^{x}\right)=x \quad(\text { all } x)
$$

DEFINITION General Exponential Functions
For any numbers $a>0$ and x, the exponential function with base a is

$$
a^{x}=e^{x \ln a}
$$

$$
2^{\sqrt{3}}=e^{\sqrt{3} \ln 2} \approx e^{1.20} \approx 3.32 \quad 2^{\pi}=e^{\pi \ln 2} \approx e^{2.18} \approx 8.8
$$

$$
x_{1} x \in \mathbb{R} \quad / /
$$

1. $e^{x_{1}} \cdot e^{x_{2}}=e^{x_{1}+x_{2}}$
2. $e^{-x}=\frac{1}{e^{x}}$
3. $\frac{e^{x_{1}}}{e^{x_{2}}}=e^{x_{1}-x_{2}}$
4. $\left(e^{x_{1}}\right)^{x_{2}}=e^{x_{1} x_{2}}=\left(e^{x_{2}}\right)^{x_{1}}$

The Derivative and Integral of e^{x}

$$
\begin{aligned}
& \text { Let } f(x)=\ln x \quad \text { and } y=e^{x}=\ln ^{-1} x=f^{-1}(x) \\
& \frac{d y}{d x}=\frac{d}{d x}\left(e^{x}\right)=\frac{d}{d x} \ln ^{-1} x=\frac{d}{d x} f^{-1}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}=\frac{1}{f^{\prime}\left(e^{x}\right)} \\
& =\frac{1}{\left(\frac{1}{e^{x}}\right)}=e^{x} \\
& \left(e^{u}\right)^{\prime}=u^{\prime} e^{u}
\end{aligned}
$$

$\frac{d}{d x} e^{\sin x}=e^{\sin x} \frac{d}{d x}(\sin x)=e^{\sin x} \cdot \cos x$

$$
\int u^{\prime} e^{u} d x=e^{u}+c
$$

$$
\int_{0}^{\ln 2} e^{3 x} d x=\left.\frac{1}{3} e^{3 x}\right|_{0} ^{\ln 2}=?
$$

$$
\left.\int_{0}^{\pi / 2} e^{\sin x} \cos x d x=e^{\sin x}\right]_{0}^{\pi / 2}=e^{1}-e^{0}=e-1
$$

The Number e as a Limit

$$
e=\lim _{x \rightarrow 0}(1+x)^{1 / x}
$$

If $f(x)=\ln x$, then $f^{\prime}(x)=1 / x$, so $f^{\prime}(1)=1$
$f^{\prime}(1)=\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h}=\lim _{x \rightarrow 0} \frac{f(1+x)-f(1)}{x}=\lim _{x \rightarrow 0} \frac{\ln (1+x)-\ln 1}{x}$
$\lim _{x \rightarrow 0} \frac{1}{x} \ln (1+x)=\lim _{x \rightarrow 0} \ln (1+x)^{1 / x}=\ln \left[\lim _{x \rightarrow 0}(1+x)^{1 / x}\right]$
$f^{\prime}(1)=1 \leftrightharpoons \ln \left[\lim _{x \rightarrow 0}(1+x)^{1 / x}\right]=1 \Rightarrow \lim _{x \rightarrow 0}(1+x)^{1 / x}=e$

$$
\frac{d}{d x} x^{n}=n x^{n-1}
$$

41. $\int\left(e^{3 x}+5 e^{-x}\right) d x$
42. $\int\left(2 e^{x}-3 e^{-2 x}\right) d x$
43. $\int_{\ln 2}^{\ln 3} e^{x} d x$
44. $\int_{-\ln 2}^{0} e^{-x} d x$
45. $\int 8 e^{(x+1)} d x$
46. $\int 2 e^{(2 x-1)} d x$
47. $\int_{\ln 4}^{\ln 9} e^{x / 2} d x$
48. $\int_{0}^{\ln 16} e^{x / 4} d x$
49. $\int \frac{e^{\sqrt{r}}}{\sqrt{r}} d r$
50. $\int \frac{e^{-\sqrt{r}}}{\sqrt{r}} d r$
51. $\int 2 t e^{-t^{2}} d t$
52. $\int t^{3} e^{\left(t^{4}\right)} d t$
53. $\int \frac{e^{1 / x}}{x^{2}} d x$
54. $\int \frac{e^{-1 / x^{2}}}{x^{3}} d x$
55. $\int_{0}^{\pi / 4}\left(1+e^{\tan \theta}\right) \sec ^{2} \theta d \theta$
56. $\int_{\pi / 4}^{\pi / 2}\left(1+e^{\cot \theta}\right) \csc ^{2} \theta d \theta$
57. $\int e^{\sec \pi t} \sec \pi t \tan \pi t d t$
58. $\int e^{\csc (\pi+t)} \csc (\pi+t) \cot (\pi+t) d t$
59. $\int_{\ln (\pi / 6)}^{\ln (\pi / 2)} 2 e^{v} \cos e^{v} d v$
60. $\int_{0}^{\sqrt{\ln \pi}} 2 x e^{x^{2}} \cos \left(e^{x^{2}}\right) d x$
61. $\int \frac{e^{r}}{1+e^{r}} d r$
62. $\int \frac{d x}{1+e^{x}}$

$$
J 1+e \cdot J 1+e^{-}
$$

$$
\begin{gathered}
e^{(\ln a+\ln b) / 2} \cdot(\ln b-\ln a)<\int_{\ln a}^{\ln b} e^{x} d x<\frac{e^{\ln a}+e^{\ln b}}{2} \cdot(\ln b-\ln a) . \\
\sqrt{a b}<\frac{b-a}{\ln b-\ln a}<\frac{a+b}{2} .
\end{gathered}
$$

The Derivative of a^{u}

$$
a>0 \text { o }
$$

$$
\begin{aligned}
& \frac{d}{d x} a^{x}=\frac{d}{d x} e^{x \ln a}=e^{x \ln a} \cdot \frac{d}{d x}(x \ln a)=a^{x} \ln a . \\
& \text { س } \\
& \frac{d}{d x} a^{u}=a^{u} \ln a \frac{d u}{d x} .=u^{\prime} a^{u} \operatorname{Ln} d \\
& \frac{d}{d x} 3^{\sin x}=3^{\sin x}(\ln 3) \frac{d}{d x}(\sin x)=3^{\sin x}(\ln 3) \cos x \\
& \frac{d^{2}}{d x^{2}}\left(a^{x}\right)=\frac{d}{d x}\left(a^{x} \ln a\right)=(\ln a)^{2} a^{x}
\end{aligned}
$$

Find $d y / d x$ if $y=x^{x}, \quad x>0$.

$$
x^{x}=e^{x \ln x}
$$

The Integral of a^{u}

$$
\int a^{u} d u=\frac{a^{u}}{\ln a}+C
$$

$$
\begin{aligned}
& \int 2^{x} d x=\frac{2^{x}}{\ln 2}+C \\
& \int 2^{\sin x} \cos x d x=\frac{2^{\sin x}}{\ln 2}+C
\end{aligned}
$$

DEFINITION $\log _{a} x$

$$
=\underbrace{1}_{-1} \cup e^{2} \mid j,{ }_{i} \quad a>0, a \neq 1
$$

$$
y=a^{x} \Longleftrightarrow x=\log _{a}^{y} \longrightarrow>0
$$

²,

$$
f \circ f^{-1}(x)=x
$$

$$
\begin{aligned}
a^{\log _{a} x} & =x & (x>0) \\
\operatorname{og}_{a}\left(a^{x}\right) & =x & (\text { all } x)
\end{aligned} \quad\left(f^{-1} \circ f\right)(\lambda)=\chi
$$

$$
\log _{a}\left(a^{x}\right)=x
$$

$$
\log _{a} x=\frac{1}{\ln a} \cdot \ln x=\frac{\ln x}{\ln a}
$$

$$
\frac{d}{d x}\left(\log _{a} u\right)=\frac{1}{\ln a} \cdot \frac{1}{u} \frac{d u}{d x}=\frac{u}{u} \times \frac{1}{\operatorname{Ln} \Omega}
$$

$$
\int \frac{\log _{2} x}{x} d x=\frac{1}{\operatorname{Ln} 2} \int \frac{\operatorname{Ln} x}{x} d x=\frac{1}{\operatorname{Ln} 2}\left(\frac{(\ln x)^{r}}{r}\right)+C
$$

49. $\int_{0}^{1} 2^{-\theta} d \theta$
50. $\int_{-2}^{0} 5^{-\theta} d \theta$
51. $\int_{1}^{\sqrt{2}} x 2^{\left(x^{2}\right)} d x$
52. $\int_{1}^{4} \frac{2^{\sqrt{x}}}{\sqrt{x}} d x$
53. $\int_{0}^{\pi / 2} 7^{\cos t} \sin t d t$
54. $\int_{0}^{\pi / 4}\left(\frac{1}{3}\right)^{\tan t} \sec ^{2} t d t$
55. $\int_{2}^{4} x^{2 x}(1+\ln x) d x$
56. $\int_{1}^{2} \frac{2^{\ln x}}{x} d x$
57. $\int 3 x^{\sqrt{3}} d x$
58. $\int x^{\sqrt{2}-1} d x$
59. $\int_{0}^{3}(\sqrt{2}+1) x^{\sqrt{2}} d x$
60. $\int_{1}^{e} x^{(\ln 2)-1} d x$
61. $\int \frac{\log _{10} x}{x} d x$
62. $\int_{1}^{4} \frac{\log _{2} x}{x} d x$
63. $\int_{1}^{4} \frac{\ln 2 \log _{2} x}{x} d x$
64. $\int_{1}^{e} \frac{2 \ln 10 \log _{10} x}{x} d x$
65. $\int_{0}^{2} \frac{\log _{2}(x+2)}{x+2} d x$
66. $\int_{1 / 10}^{10} \frac{\log _{10}(10 x)}{x} d x$
67. $\int_{0}^{9} \frac{2 \log _{10}(x+1)}{x+1} d x$
68. $\int_{2}^{3} \frac{2 \log _{2}(x-1)}{x-1} d x$
69. $\int \frac{d x}{x \log _{10} x}$

Hyperbolic Functions
$f(x)=\underbrace{\frac{f(x)+f(-x)}{2}}_{\text {even part }}+\underbrace{\frac{f(x)-f(-x)}{2}}_{\text {odd part }}$.

$$
e^{x}=\underbrace{\frac{e^{x}+e^{-x}}{2}}_{\text {even part }}+\underbrace{\frac{e^{x}-e^{-x}}{2}}_{\text {odd part }}
$$

Hyperbolic sine of $x: \quad \sinh x=\frac{e^{x}-e^{-x}}{2}$

Hyperbolic cosine of $x: \quad \cosh x=\frac{e^{x}+e^{-x}}{2}$

Hyperbolic tangent: $\quad \tanh x=\frac{\sinh x}{\cosh x}=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}$
Hyperbolic cotangent: $\quad \operatorname{coth} x=\frac{\cosh x}{\sinh x}=\frac{e^{x}+e^{-x}}{e^{x}-e^{-x}}$

Hyperbolic secant: $\quad \operatorname{sech} x=\frac{1}{\cosh x}=\frac{2}{e^{x}+e^{-x}}$

Hyperbolic cosecant: $\quad \operatorname{csch} x=\frac{1}{\sinh x}=\frac{2}{e^{x}-e^{-x}}$

از اينجا علت نامڭذارى دو تابع سينـوس هييـربوليك و كـسينو س هييــربوليكا معلـوم
می شود. دقت كنيـــ كـه حون
نقطه M همواره در سمت راست محور y ها واقع میشود.
$2 \sinh x \cosh x=2 \frac{e^{x}-e^{-x}}{2} \frac{e^{x}+e^{-x}}{2}=\frac{e^{2 x}-e^{-2 x}}{2}=\sinh (2 x)$
$\cosh ^{2} x-\sinh ^{2} x=1 \quad \Rightarrow \cosh ^{2} x=1+\sinh ^{2} x$
$\sinh 2 x=2 \sinh x \cosh x$
$\cosh 2 x=\cosh ^{2} x+\sinh ^{2} x$
$\cosh ^{2} x=\frac{\cosh 2 x+1}{2}$
$\sinh ^{2} x=\frac{\cosh 2 x-1}{2}$
$\tanh ^{2} x=1-\operatorname{sech}^{2} x$
$\operatorname{coth}^{2} x=1+\operatorname{csch}^{2} x$
$\frac{d}{d x}(\sinh u)=\cosh u \frac{d u}{d x}$
$\int \sinh u d u=\cosh u+C$
$\frac{d}{d x}(\cosh u)=\sinh u \frac{d u}{d x}$
$\int \cosh u d u=\sinh u+C$
$\frac{d}{d x}(\tanh u)=\operatorname{sech}^{2} u \frac{d u}{d x}$
$\int \operatorname{sech}^{2} u d u=\tanh u+C$
$\frac{d}{d x}(\operatorname{coth} u)=-\operatorname{csch}^{2} u \frac{d u}{d x}$
$\int \operatorname{csch}^{2} u d u=-\operatorname{coth} u+C$
$\frac{d}{d x}(\operatorname{sech} u)=-\operatorname{sech} u \tanh u \frac{d u}{d x} \quad \int \operatorname{sech} u \tanh u d u=-\operatorname{sech} u+C$
$\frac{d}{d x}(\operatorname{csch} u)=-\operatorname{csch} u \operatorname{coth} u \frac{d u}{d x} \quad \int \operatorname{csch} u \operatorname{coth} u d u=-\operatorname{csch} u+C$
$\frac{d}{d x}(\sinh u)=\frac{d}{d x}\left(\frac{e^{u}-e^{-u}}{2}\right)=\frac{e^{u} d u / d x+e^{-u} d u / d x}{2}=\cosh u \frac{d u}{d x}$
$\frac{d}{d t}\left(\tanh \sqrt{1+t^{2}}\right)=\quad \int \operatorname{coth} 5 x d x=$
$\int_{0}^{1} \sinh ^{2} x d x=\int \frac{\cosh 2 x}{2} d x-\int \frac{1}{2} d x=\frac{1}{4} \sinh 2 x-\frac{1}{2} x+c$
$\int_{0}^{\ln 2} 4 e^{x} \sinh x d x=\int_{0}^{\ln 2} \frac{4 e^{2 x}-4}{2} d x=$

Inverse Hyperbolic Functions
 $y=\cosh x, y=\operatorname{sech} x \quad i-\quad \underbrace{}_{i}=\sim$

(a)

(b)
(a)

(c)
$\operatorname{sech}^{-1} x=\cosh ^{-1} \frac{1}{x}$
$\operatorname{csch}^{-1} x=\sinh ^{-1} \frac{1}{x}$
$\operatorname{coth}^{-1} x=\tanh ^{-1} \frac{1}{x}$
if $0<x \leq 1$, then $\operatorname{sech}\left(\cosh ^{-1}\left(\frac{1}{x}\right)\right)=\frac{1}{\cosh \left(\cosh ^{-1}\left(\frac{1}{x}\right)\right)}=\frac{1}{\left(\frac{1}{x}\right)}=x$

$$
\cosh ^{-1}\left(\frac{1}{x}\right)=\operatorname{sech}^{-1} x
$$

Derivatives and Integrals
$\frac{d\left(\sinh ^{-1} u\right)}{d x}=\frac{1}{\sqrt{1+u^{2}}} \frac{d u}{d x}=\frac{u^{\prime}}{\sqrt{1+u^{2}}} \quad \frac{d\left(\tanh ^{-1} u\right)}{d x}=\frac{1}{1-u^{2}} \frac{d u}{d x}, \quad|u|<1$
$\frac{d\left(\cosh ^{-1} u\right)}{d x}=\frac{1}{\sqrt{u^{2}-1}} \frac{d u}{d x}, \quad u>1 \quad \frac{d\left(\operatorname{coth}^{-1} u\right)}{d x}=\frac{1}{1-u^{2}} \frac{d u}{d x}, \quad|u|>1$
$\frac{d\left(\operatorname{sech}^{-1} u\right)}{d x}=\frac{-d u / d x}{u \sqrt{1-u^{2}}}, \quad 0<u<1 \quad \frac{d\left(\operatorname{csch}^{-1} u\right)}{d x}=\frac{-d u / d x}{|u| \sqrt{1+u^{2}}}, \quad u \neq 0$

$y=\sinh ^{-1} x \Rightarrow x=\sinh y \xrightarrow{v^{\prime}} 1=y^{\prime} \cosh y$

$$
\Rightarrow y^{\prime}=\frac{1}{\cosh y}=\frac{1}{\sqrt{1+\sinh ^{2} y}}=\frac{1}{\sqrt{1+x^{2}}}
$$

$d u=u^{\prime} d x$

1. $\int \frac{d u}{\sqrt{a^{2}+u^{2}}}=\sinh ^{-1}\left(\frac{u}{a}\right)+C$,

$$
a>0
$$

2. $\int \frac{d u}{\sqrt{u^{2}-a^{2}}}=\cosh ^{-1}\left(\frac{u}{a}\right)+C, \quad u>a>0$

3． $\int \frac{d u}{a^{2}-u^{2}}= \begin{cases}\frac{1}{a} \tanh ^{-1}\left(\frac{u}{a}\right)+C & \text { if } u^{2}<a^{2} \\ \frac{1}{a} \operatorname{coth}^{-1}\left(\frac{u}{a}\right)+C, & \text { if } u^{2}>a^{2}\end{cases}$
4． $\int \frac{d u}{u \sqrt{a^{2}-u^{2}}}=-\frac{1}{a} \operatorname{sech}^{-1}\left(\frac{u}{a}\right)+C, \quad 0<u<a$
5． $\int \frac{d u}{u \sqrt{a^{2}+u^{2}}}=-\frac{1}{a} \operatorname{csch}^{-1}\left|\frac{u}{a}\right|+C, \quad u \neq 0$ and $a>0$

$$
\begin{aligned}
& \sinh ^{-1} x=\ln \left(x+\sqrt{x^{2}+1}\right), \quad-\infty<x<\infty \quad \operatorname{sech}^{-1} x=\ln \left(\frac{1+\sqrt{1-x^{2}}}{x}\right), \quad 0<x \leq 1 \\
& \cosh ^{-1} x=\ln \left(x+\sqrt{x^{2}+1}\right) \text {, } \\
& x \geq 1 \\
& \tanh ^{-1} x=\frac{1}{2} \ln \frac{1+x}{1-x} \text {, } \\
& |x|<1 \\
& \operatorname{csch}^{-1} x=\ln \left(\frac{1}{x}+\frac{\sqrt{1+x^{2}}}{|x|}\right), \quad x \neq 0 \\
& \text { (3) 心しゃ } \\
& \operatorname{coth}^{-1} x=\frac{1}{2} \ln \frac{x+1}{x-1}, \\
& |x|>1 \\
& \begin{aligned}
y=\sinh ^{-1} x & \Rightarrow \sinh y=x \Rightarrow 2 x=e^{y}-e^{-y} \\
& \Rightarrow \cosh y=\sqrt{1+x^{2}}
\end{aligned} \Rightarrow 2 \sqrt{1+x^{2}}=e^{y}+e^{-y} \Rightarrow 2\left(x+\sqrt{1+x^{2}}\right)=2 e^{y} \\
& \Rightarrow y=\operatorname{Ln}\left(x+\sqrt{1+x^{2}}\right)
\end{aligned}
$$

67． $\int_{0}^{2 \sqrt{3}} \frac{d x}{\sqrt{4+x^{2}}} \quad\left|\quad 68 . \int_{0}^{1 / 3} \frac{6 d x}{\sqrt{1+9 x^{2}}}=2 \sinh ^{-1} 3 x\right|_{0}^{\frac{1}{3}}$

$$
\begin{aligned}
& \pm\left.\sinh ^{-1} \frac{x}{2}\right|_{0} ^{2 \sqrt{3}}=\sinh ^{-1} \sqrt{3}-\sinh ^{-1}(n) \\
& =\ln (\sqrt{3}+2)
\end{aligned}
$$

69． $\int_{5 / 4}^{2} \frac{d x}{1-x^{2}}$
70． $\int_{0}^{1 / 2} \frac{d x}{1-x^{2}} \quad 0<x \leqslant \frac{1}{2} \Rightarrow x^{2} \leqslant \frac{1}{4}<1$
73. $\int_{0}^{\pi} \frac{\cos x d x}{\sqrt{1+\sin ^{2} x}}$
74. $\int_{1}^{e} \frac{d x}{x \sqrt{1+(\ln x)^{2}}}=\int_{1}^{e} \frac{\frac{1}{x}}{\sqrt{1+(\ln x)^{2}}}$

$$
\left.\sinh ^{-1}(\sin x)\right|_{0} ^{\pi 1}!\frac{1}{1}=-\left.\ldots \sinh ^{-1}(\ln x)\right|_{1} ^{e}
$$

$$
\begin{aligned}
& \int \operatorname{sech} x d x= \\
& \text { 51. } \int_{\ln ^{\ln 2}}^{\ln 4} \operatorname{coth} x d x
\end{aligned}
$$

$$
=\frac{G}{2}
$$

52. $\int_{0}^{\ln 2} \tanh 2 x d x$
53. $\int_{-\ln 4}^{-\ln 2} 2 e^{\theta} \cosh \theta d \theta$
54. $\int_{0}^{\ln 2} 4 e^{-\theta} \sinh \theta d \theta$
55. $\int_{-\pi / 4}^{\pi / 4} \cosh (\tan \theta) \sec ^{2} \theta d \theta$
56. $\int_{0}^{\pi / 2} 2 \sinh (\sin \theta) \cos \theta d \theta$
57. $\int_{1}^{2} \frac{\cosh (\ln t)}{t} d t$
58. $\int_{1}^{4} \frac{8 \cosh \sqrt{x}}{\sqrt{x}} d x$
59. $\int_{-\ln 2}^{0} \cosh ^{2}\left(\frac{x}{2}\right) d x$
60. $\int_{0}^{\ln 10} 4 \sinh ^{2}\left(\frac{x}{2}\right) d x$

$$
\begin{aligned}
& \text { 69. } \int_{5 / 4} \overline{1-x^{-2}} \\
& \text { 70. } \int_{0} \overline{1-x^{2}} \quad \therefore 4 \geqslant \overline{2} \Rightarrow x \geqslant \frac{4}{4} \backslash 1 \\
& \frac{5}{4}<x<2 \Rightarrow x^{2}>\frac{25}{16}>1 \\
& \Rightarrow \int_{\frac{5}{4}}^{2} \frac{d x}{1-x^{2}}=\left.\operatorname{coth}^{-1} x\right|_{\frac{5}{4}} ^{2} \\
& \text { 71. } \int_{1 / 5}^{3 / 13} \frac{d x}{x \sqrt{1-16 x^{2}}} \\
& =-\left.\operatorname{sech}^{-1}(4 x)\right|_{\frac{1}{5}} ^{\frac{3}{13}} \\
& \text { 72. } \int_{1}^{2} \frac{d x}{x \sqrt{4+x^{2}}}=\left.\frac{-1}{2} \operatorname{csch}\left|\frac{x}{2}\right|\right|_{1} ^{-1}
\end{aligned}
$$

In Exercises 25－36，find the derivative of y with respect to the appro－ priate variable．
25．$y=\sinh ^{-1} \sqrt{x}$
26．$y=\cosh ^{-1} 2 \sqrt{x+1}$
27．$y=(1-\theta) \tanh ^{-1} \theta$
28．$y=\left(\theta^{2}+2 \theta\right) \tanh ^{-1}(\theta+1)$
29．$y=(1-t) \operatorname{coth}^{-1} \sqrt{t}$
30．$y=\left(1-t^{2}\right) \operatorname{coth}^{-1} t$
31．$y=\cos ^{-1} x-x \operatorname{sech}^{-1} x$
32．$y=\ln x+\sqrt{1-x^{2}} \operatorname{sech}^{-1} x$
33．$y=\operatorname{csch}^{-1}\left(\frac{1}{2}\right)^{\theta}$
34．$y=\operatorname{csch}^{-1} 2^{\theta}$
35．$y=\sinh ^{-1}(\tan x)$
36．$y=\cosh ^{-1}(\sec x), \quad 0<x<\pi / 2$

TECHNIQUES OFINTEGRATION

$$
\begin{aligned}
& \text { 过浣 } \\
& \int(\sec x+\tan x)^{2} d x \\
& \underbrace{\tan ^{2} x} \\
& \int\left(\sec ^{2} x+2 \sec x \tan x+\sec ^{2} x-1\right) d x=2 \int \sec ^{2} x d x+2 \int \sec x \tan x d x-\int 1 d x \\
& =2 \tan x+2 \sec x-x+C . \\
& \int_{0}^{\pi / 4} \sqrt{1+\cos 4 x} d x .=\int_{0}^{\frac{\pi}{4}} \sqrt{2 \cos ^{2}(2 x)} d x=\int_{0}^{\pi / 4} \sqrt{2}|\cos (2 x)| \\
& \sqrt{2} \int_{0}^{\frac{\pi}{4}} \cos (2 x)=2_{0}^{2} \\
& \int \frac{3 x^{2}-7 x}{3 x+2} d x \\
& 3 x^{2}-7 x \left\lvert\, \frac{3 x+2}{x} \quad a=19+r\right. \\
& \frac{\xi}{6} \quad x-3 \quad \frac{a}{b}=9+\frac{r}{b} \\
& =\int\left(x-3+\frac{6}{3 x+2}\right) d x={ }_{0}^{2} \\
& \int \frac{3 x+2}{\sqrt{1-x^{2}}} d x=3 \int \frac{x}{\sqrt{1-x^{2}}} d x+\int \frac{2}{\sqrt{1-x^{2}}}={ }^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \int \frac{3 x+2}{\sqrt{1-x^{2}}} d x=\underbrace{-3 \int \frac{x}{\sqrt{1-x^{2}}} d x+\underbrace{\int \frac{1}{\sqrt{1-x^{2}}}}=\underbrace{1-x^{2}}+C}=\underbrace{L} \\
& \int \sec x d x=\int(\sec x)(1) d x=\int \sec x \cdot \frac{\sec x+\tan x}{\sec x+\tan x} d x=\int \frac{\sec ^{2} x+\sec x \tan x}{\sec x+\tan x} d x \\
& =\int \frac{d u}{u}=\ln |u|+C=\ln |\sec x+\tan x|+C .
\end{aligned}
$$

1. $\int \sec u d u=\ln |\sec u+\tan u|+C$
2. $\int \csc u d u=-\ln |\csc u+\cot u|+C$
integration by parts

$$
\begin{aligned}
& \frac{d}{d x}[f(x) g(x)]=f^{\prime}(x) g(x)+f(x) g^{\prime}(x) \\
& \int \frac{d}{d x}[f(x) g(x)] d x=\int\left[f^{\prime}(x) g(x)+f(x) g^{\prime}(x)\right] d x \\
& \int f(x) g^{\prime}(x) d x=\int \frac{d}{d x}[f(x) g(x)] d x-\int f^{\prime}(x) g(x) d x \\
& \int f(x) d(g(\lambda))=f(x) g(\lambda)-\int g(x) d(f(\lambda)) \\
& \iint f(x) d x=f(x) g(x)-\int f^{\prime}(x) g(x) d x \\
& \int u d v=u v-\int v d u
\end{aligned}
$$

$$
\begin{aligned}
& \left.\int x \cos x d x \quad \quad \quad \circ r_{-}\right) d(\sin x)=\cos x d x(\cdot 1)_{c}^{2} \\
& =\int x d(\sin x)=x \sin x-\int \sin x d x=x \sin x+\cos x+c \\
& I=\int x \cos x d x=\int u d v=u v-\int V d u \\
& \text { Bot, } \\
& \left\{\begin{array}{l}
u=x \Rightarrow d u=d x \\
d v=\cos x d x \xrightarrow{\prime} \Rightarrow v=\sin x
\end{array} \quad \Rightarrow I=x \sin x-\int \sin x d x=x \sin x+\cos x+c\right. \\
& \text { - - - - - - - - - - } \\
& \int \ln x d x=x \operatorname{Ln} x-\int x d(\operatorname{Ln} x)=x \operatorname{Ln} x-\int \frac{x}{x} d x=x \ln x-x+c \\
& \int x^{2} e^{x} d x=\int x^{2} d\left(e^{x}\right)=x^{2} e^{x}-\int e^{x} d\left(x^{2}\right)=x^{2} e^{x}-\int 2 x e^{x} d x \\
& =x^{2} e^{x}-2\left(x e^{x}-\int e^{x} d x\right)=e^{2} e^{x}-2 x e^{x}+2 e^{x}+c \\
& \int e^{x} \cos x d x=\int \cos x d\left(e^{x}\right)=e^{x} \cos x-\int e^{x} d(\cos x) \\
& =e^{x} \cos x+\int e^{x} \sin x=e^{x} \cos x+\left[e^{x} \sin x-\int e^{x} \cos x d x\right] \\
& \Rightarrow 2 \int e^{x} \cos x=e^{x}(\cos x+\sin x) \\
& \Longrightarrow \int e^{x} \cos x=\frac{1}{2} e^{x}(\cos x+\sin x) \\
& \int_{0}^{4} x e^{-x} d x=\int_{0}^{4} x d\left(-e^{-x}\right)=-\left.x e^{-x}\right|_{0} ^{4}+\int_{0}^{4} e^{-x} d x \\
& =-\left.e^{-x}(x+1)\right|_{0} ^{4}=e^{2}
\end{aligned}
$$

Tabular Integration

$$
\int x^{2} e^{x} d x
$$

With $f(x)=x^{2}$ and $g(x)=e^{x}$, we list:
$f(x)$ and its derivatives
$g(x)$ and its integrals

$$
\begin{aligned}
& \int x^{3} \sin x d x=I \\
& I=-x^{3} \cos x+3 x^{2} \sin x+6 x \cos x-6 \sin x+c \\
& \int x^{2} \cos (3 x) d x=\text { ? } \\
& \cdot 1 \\
& \int \cos ^{n} x d x=\int \cos ^{n-1} x \cos x d x=\int \cos ^{n-1} x d(\sin x)=\sin x \cos ^{n-1} x-\int \sin x d\left(\cos ^{n-1} x\right) \\
& =\sin x \cos ^{n-1} x+(n-1) \int \sin ^{2} x \cos ^{n-2} x d x=\sin x \cos ^{n-1} x+(n-1) \int\left(1-\cos ^{2} x\right) \cos ^{n-2} x d x \\
& \left.=\sin x \cos ^{n-1} x+(n-1) \int \cos ^{n-2} x-(n-1) \int \cos ^{n} x d x=\right] \\
& \int \cos ^{n} x d x=\frac{\cos ^{n-1} x \sin x}{n}+\frac{n-1}{n} \int \cos ^{n-2} x d x \\
& \int \cos ^{3} x d x=\frac{\cos ^{2} x \sin x}{3}+\frac{2}{3} \int \cos x d x=\text { ? }
\end{aligned}
$$

1. $\int x \sin \frac{x}{2} d x$
2. $\int \theta \cos \pi \theta d \theta$
3. $\int\left(x^{2}-5 x\right) e^{x} d x$
4. $\int\left(r^{2}+r+1\right) e^{r} d r$
5. $\int t^{2} \cos t d t$
6. $\int x^{2} \sin x d x$
7. $\int x^{5} e^{x} d x$
8. $\int t^{2} e^{4 t} d t$
9. $\int_{1}^{2} x \ln x d x$
10. $\int_{1}^{e} x^{3} \ln x d x$
11. $\int_{0}^{\pi / 2} \theta^{2} \sin 2 \theta d \theta$
12. $\int_{0}^{\pi / 2} x^{3} \cos 2 x d x$
13. $\int \tan ^{-1} y d y$
14. $\int \sin ^{-1} y d y$
15. $\int_{2 / \sqrt{3}}^{2} t \sec ^{-1} t d t$
16. $\int x \sec ^{2} x d x$
17. $\int 4 x \sec ^{2} 2 x d x$
18. $\int e^{\theta} \sin \theta d \theta$
19. $\int_{0}^{1 / \sqrt{2}} 2 x \sin ^{-1}$
20. $\int e^{-y} \cos y d y$
21. $\int x^{3} e^{x} d x$
22. $\int p^{4} e^{-p} d p$
23. $\int e^{2 x} \cos 3 x d x$
24. $\int e^{-2 x} \sin 2 x d x$
25. $\int e^{\sqrt{3 s+9}} d s$
26. $\int_{0}^{1} x \sqrt{1-x} d x$
27. $\int_{0}^{\pi / 3} x \tan ^{2} x d x$
28. $\int \ln \left(x+x^{2}\right) d x$
29. $\int \sin (\ln x) d x$
30. $\int z(\ln z)^{2} d z$
$\int f^{-1}(x) d x=\int y f^{\prime}(y) d y=y f(y)-\int f(y) d y=x f^{-1}(x)-\int f(y) d y$

$$
\int \ln x d x=x \ln x-x+C
$$

$$
\begin{aligned}
& \int f^{-1}(x) d x=x f^{-1}(x)-\int f(y) d y \quad y=f^{-1}(x) \\
& \int f^{-1}(x) d x=x f^{-1}(x)-\int x\left(\frac{d}{d x} f^{-1}(x)\right) d x \\
& x-x+C . \\
& \begin{array}{l}
y=\ln x, \quad x=e^{y} \\
d x=e^{y} d y
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \int \sin ^{-1} x d x \quad \int \tan ^{-1} x d x \quad \int \cos ^{-1} x d x=\quad \int \tanh ^{-1} x d x \\
& \int \sec ^{-1} x d x \quad \int \log _{2} x d x \quad \sinh ^{-1} x d x \\
& \int \sin ^{-1} x d x=x \sin ^{-1} x-\int x d\left(\sin ^{-1} x\right)=x \sin ^{-1} x-\int \frac{x}{\sqrt{1-x^{r}}} d x=x \sin ^{-1} x+\sqrt{1-x^{r}}+c \\
& \text { كل } \\
& \int \frac{5 x-3}{(x+1)(x-3)} d x \quad \frac{5 x-3}{x^{2}-2 x-3}=\frac{A}{x+1}+\frac{B}{x-3} . \\
& 5 x-3=A(x-3)+B(x+1)=(A+B) x-3 A+B \\
& \Rightarrow\left\{\begin{array}{l}
A+B=5 \\
3 A-B=-3
\end{array} \Rightarrow A=2, B=3\right. \\
& \int \frac{5 x-3}{(x+1)(x-3)} d x=\int \frac{2}{x+1} d x+\int \frac{3}{x-3} d x=2 \ln |x+1|+3 \ln |x-3|+C \\
& \text { in } \frac{1}{a_{1} a_{2}-a_{n}}=\frac{\frac{1}{a_{n}-a_{1}}}{a_{1} a_{2}-a_{n-1}}-\frac{\frac{1}{a_{n}-a_{1}}}{a_{2} a_{3} \ldots a_{n}} \\
& \frac{5 x-3}{(x+1)(x-3)}=\frac{5 x-15+12}{(x+1)(x-3)}=\frac{5}{x+1}+\frac{12}{(x-3)(x+1)}=\frac{5}{x+1}+\frac{3}{x-3}-\frac{3}{x+1} \\
& =\frac{2}{x+1}+\frac{3}{x-3}
\end{aligned}
$$

كسر گو ياى

به ازاى هر جمله

$$
\frac{A_{1}}{x-a}+\frac{A_{\uparrow}}{(x-a)^{r}}+\cdots+\frac{A_{m}}{(x-a)^{m}}
$$

به ازای هر جمله

$$
\frac{B_{1} x+C_{1}}{x^{\Upsilon}+b x+c}+\frac{B_{\curlyvee} x+C_{\curlyvee}}{\left(x^{\Upsilon}+b x+c\right)^{\Upsilon}}+\cdots+\frac{B_{n} x+C_{n}}{\left(x^{\curlyvee}+b x+c\right)^{n}}
$$

$$
\int \frac{6 x+7}{(x+2)^{2}} d x
$$

$$
\frac{6 x+7}{(x+2)^{2}}=\frac{A}{(x+2)}+\frac{B}{(x+2)^{2}} \Rightarrow A, B=?
$$

$$
\begin{aligned}
& \int \frac{x^{2}+4 x+1}{(x-1)(x+1)(x+3)} d x=I \\
& \frac{x^{2}+4 x+1}{(x-1)(x+1)(x+3)}=\frac{A}{x-1}+\frac{B}{x+1}+\frac{C}{x+3} \Rightarrow \\
& x^{2}+4 x+1=A(x+1)(x+3)+13(x-1)(x+3)+c((x-1)(x+1)) \\
& x^{2}+4 x+1=A x^{2}+4 A x+3 A+B x^{2}+2 B x-3 B+C x^{2}-C \\
& / 1 /=(A+B+C) x^{2}+(4 A+2 B) x+3 A-3 B-C \\
& \Rightarrow\left\{\begin{array}{l}
A+B+C=1 \\
4 A+2 B=4 \\
3 A-3 B-C=1
\end{array}\right\}+\left\{\begin{array}{l}
4 A-2 B=2 \\
4 A+2 B=4 \Rightarrow A=\frac{3}{4} \\
B=\frac{1}{2} \Rightarrow C=-\frac{1}{4}
\end{array}\right. \\
& I=\int \frac{\frac{3}{4}}{x-1} d x+\int \frac{\frac{1}{2}}{x+1} d x-\int \frac{\frac{1}{4}}{x+5} d x={ }_{c}^{7}
\end{aligned}
$$

$$
\begin{aligned}
& \int \frac{2 x^{3}-4 x^{2}-x-3}{x^{2}-2 x-3} d x . \quad \frac{2 x^{3}-4 x^{2}-x-3}{x^{2}-2 x-3}=2 x+\frac{5 x-3}{x^{2}-2 x-3} \\
& \int \frac{r}{x^{r}-1} d x=\int \frac{3}{(x-1)\left(x^{2}+x+1\right)} d x \\
& \frac{3}{(x-1)\left(x^{2}+x+1\right)}=\frac{A}{x-1}+\frac{B x+c}{x^{r}+x+1} \\
& \int \frac{x+1}{(x-1)^{r}\left(x^{r}+x+1\right)} d x \\
& \frac{x+1}{(x-1)^{2}\left(x^{2}+x+1\right)}=\frac{A+\infty) / 1}{x-1}+\frac{B}{(x-1)^{2}}+\frac{c x+d}{(x+x+1)}
\end{aligned}
$$

$$
\int \frac{-2 x+4}{\left(x^{2}+1\right)(x-1)^{2}} d x
$$

$$
\frac{-2 x+4}{\left(x^{2}+1\right)(x-1)^{2}}=\frac{A x+B}{x^{2}+1}+\frac{C}{x-1}+\frac{D}{(x-1)^{2}}
$$

$$
\int \frac{d x}{x\left(x^{2}+1\right)^{2}}
$$

$$
\frac{1}{x\left(x^{2}+1\right)^{2}}=\frac{A}{x}+\frac{B x+C}{x^{2}+1}+\frac{D x+E}{\left(x^{2}+1\right)^{2}}
$$

Heaviside Method

Find A, B, and C in the partial-fraction expansion

$$
\begin{aligned}
& \frac{x^{2}+1}{(x-1)(x-2)(x-3)}=\frac{A}{x-1}+\frac{B}{x-2}+\frac{C}{x-3} \\
& \frac{x^{2}+1}{(x-2)(x-3)}=A+\frac{B(x-1)}{x-2}+\frac{c(x-1)}{x-3}
\end{aligned}
$$

$$
\frac{2}{2}=A \Longleftrightarrow A=1
$$

$$
A=\frac{(1)^{2}+1}{\sum_{\substack{\Uparrow \\ \text { Cover }}}^{(x-1)}(1-2)(1-3)}=\frac{2}{(-1)(-2)}=1
$$

$$
B=\frac{(2)^{2}+1}{(2-1) \underbrace{(x-2)}_{\substack{\Uparrow \\ \text { Cover }}}(2-3)}=\frac{5}{(1)(-1)}=-5
$$

$$
\frac{f(x)}{g(x)}=\frac{f(x)}{\left(x-r_{1}\right)\left(x-r_{2}\right) \cdots\left(x-r_{n}\right)}=\frac{A_{1}}{\left(x-r_{1}\right)}+\frac{A_{2}}{\left(x-r_{2}\right)}+\cdots+\frac{A_{n}}{\left(x-r_{n}\right)}
$$

$$
\begin{aligned}
& A_{1}=\frac{f\left(r_{1}\right)}{\left(r_{1}-r_{2}\right) \cdots\left(r_{1}-r_{n}\right)} \quad A_{2}=\frac{f\left(r_{2}\right)}{\left(r_{2}-r_{1}\right)\left(r_{2}-r_{3}\right) \cdots\left(r_{2}-r_{n}\right)} \\
& 0 \infty A_{n}=\frac{f\left(r_{n}\right)}{\left(r_{n}-r_{1}\right)\left(r_{n}-r_{2}\right) \cdots\left(r_{n}-r_{n-1}\right)} . \\
& \mathbf{I}=\int \frac{x+4}{x^{3}+3 x^{2}-10 x} d x . \quad \frac{x+4}{x(x+5)(x-2)}=\frac{A}{x}+\frac{B}{x+5}+\frac{c}{x-2}
\end{aligned}
$$

$$
\begin{aligned}
& A=-\frac{2}{5}, B=\frac{-1}{35}, C=\frac{3}{7} \\
& I=-\frac{2}{5} \ln |x|-\frac{1}{35} \ln |x+5|+\frac{3}{7} \ln |x-2|+C
\end{aligned}
$$

Find A, B, and C in the equation $\quad \frac{x-1}{(x+1)^{3}}=\frac{A}{x+1}+\frac{B}{(x+1)^{2}}+\frac{C}{(x+1)^{3}}$.

$$
x-1=A(x+1)^{2}+B(x+1)+c \quad \text { 证 } 13(x+1)^{3}, 1,10
$$

路

$$
\begin{aligned}
& A=2 A(x+1)+B \quad x \Rightarrow B=1 \\
& 0=2 A \Rightarrow A=0
\end{aligned}
$$

9. $\int \frac{d x}{1-x^{2}}$
10. $\int \frac{d x}{x^{2}+2 x}$
11. $\int_{0}^{1} \frac{x^{3} d x}{x^{2}+2 x+1}$
12. $\int_{-1}^{0} \frac{x^{3} d x}{x^{2}-2 x+1}$
13. $\int \frac{x+4}{x^{2}+5 x-6} d x$
14. $\int \frac{2 x+1}{x^{2}-7 x+12} d x$
15. $\int \frac{d x}{\left(x^{2}-1\right)^{2}}$
16. $\int \frac{x^{2} d x}{(x-1)\left(x^{2}+2 x+1\right)}$
17. $\int_{4}^{8} \frac{y d y}{y^{2}-2 y-3}$
18. $\int_{1 / 2}^{1} \frac{y+4}{y^{2}+y} d y$
19. $\int \frac{d t}{t^{3}+t^{2}-2 t}$
20. $\int \frac{x+3}{2 x^{3}-8 x} d x$
21. $\int_{0}^{1} \frac{d x}{(x+1)\left(x^{2}+1\right)}$
22. $\int_{1}^{\sqrt{3}} \frac{3 t^{2}+t+4}{t^{3}+t} d t$
23. $\int \frac{y^{2}+2 y+1}{\left(y^{2}+1\right)^{2}} d y$
24. $\int \frac{8 x^{2}+8 x+2}{\left(4 x^{2}+1\right)^{2}} d x$
25. $\int \frac{2 s+2}{\left(s^{2}+1\right)(s-1)^{3}} d s$
26. $\int \frac{s^{4}+81}{s\left(s^{2}+9\right)^{2}} d s$
27. $\int \frac{2 x^{3}-2 x^{2}+1}{x^{2}-x} d x$
28. $\int \frac{x^{4}}{x^{2}-1} d x$
29. $\int \frac{2 \theta^{3}+5 \theta^{2}+8 \theta+4}{\left(\theta^{2}+2 \theta+2\right)^{2}} d \theta$
30. $\int \frac{9 x^{3}-3 x+1}{x^{3}-x^{2}} d x$
31. $\int \frac{16 x^{3}}{4 x^{2}-4 x+1} d x$
32. $\int \frac{\theta^{4}-4 \theta^{3}+2 \theta^{2}-3 \theta+1}{\left(\theta^{2}+1\right)^{3}} d \theta$
33. $\int \frac{y^{4}+y^{2}-1}{y^{3}+y} d y$
34. $\int \frac{2 y^{4}}{y^{3}-y^{2}+y-1} d y$
35. $\int \frac{e^{t} d t}{e^{2 t}+3 e^{t}+2}$
36. $\int \frac{e^{4 t}+2 e^{2 t}-e^{t}}{e^{2 t}+1} d t$
37. $\int \frac{\sin \theta d \theta}{\cos ^{2} \theta+\cos \theta-2}$
38. $\int \frac{\cos y d y}{\sin ^{2} y+\sin y-6}$
39. $\int \frac{(x-2)^{2} \tan ^{-1}(2 x)-12 x^{3}-3 x}{\left(4 x^{2}+1\right)(x-2)^{2}} d x$
40. $\int \frac{e^{t} d t}{e^{2 t}+3 e^{t}+2}$
41. $\int \frac{e^{4 t}+\overline{2 e^{2 t}-e^{t}}}{e^{2 t}+1} d t$
$\stackrel{E}{g}=u \quad \frac{d u}{u^{2}+3 u+2}$
42. $\int \frac{\cos y d y}{\sin ^{2} y+\sin y-6}$
43. $\int \frac{\sin \theta d \theta}{\cos ^{2} \theta+\cos \theta-2}$
44. $\int \frac{(x-2)^{2} \tan ^{-1}(2 x)-12 x^{3}-3 x}{\left(4 x^{2}+1\right)(x-2)^{2}} d x$
45. $\int \frac{(x+1)^{2} \tan ^{-1}(3 x)+9 x^{3}+x}{\left(9 x^{2}+1\right)(x+1)^{2}} d x$
 كو چكتريـن مضرب مشتر ک مخرج تو انهاست.

$$
\begin{aligned}
& \int \frac{x+\sqrt[r]{x^{r}}+\sqrt[4]{x}}{x(1+\sqrt[r]{x})} d x \Rightarrow x=2^{6} \Rightarrow d x=6 z^{5} d z \\
& 6 \int \frac{z^{5}+z^{3}+1}{z^{2}+1} d z=6 \int \frac{2^{3}\left(z^{2}+1\right)+1}{z^{2}+1} \\
& =6\left(\frac{z^{4}}{4}+\operatorname{tg}^{-1} z\right) \frac{x=z^{6}}{=\frac{3}{2} \sqrt[3]{x^{2}}+6 \operatorname{tg}^{-1} \sqrt{2} x}+C \\
& \int \frac{\sqrt{x}+\sqrt[r]{x}}{\sqrt[4]{x^{0}}-\sqrt[4]{x^{v}}} d x
\end{aligned}
$$

 تبديل مى كنيم، در اين صورت خواهيم داشت:

$$
\begin{aligned}
& \sin x=\frac{r \tan \frac{x}{r}}{1+\tan ^{r} \frac{x}{r}}=\frac{r z}{1+z^{r}}, \cos x=\frac{1-\tan ^{r} \frac{x}{r}}{1+\tan ^{r} \frac{x}{r}}=\frac{1-z^{r}}{1+z^{r}}, d z=\frac{1}{r}\left(1+\tan ^{r} \frac{x}{r}\right) d x \\
& . d x=\frac{r d z}{1+z^{r}} \quad L
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \quad I=\ln \left|\operatorname{tg} \frac{x}{2}+1\right|+C \\
& \int d x \quad 1 d x \quad \operatorname{bocos}
\end{aligned}
$$

$$
\int \frac{d x}{1+\sin x+\cos x}=\int \frac{d x}{\sin ^{r}\left(\frac{x}{r}\right)+\cos ^{r}\left(\frac{x}{r}\right)+r \sin \left(\frac{x}{r}\right) \cos \left(\frac{x}{r}\right)+\cos ^{r}\left(\frac{x}{r}\right)-\sin ^{2}\left(\frac{x}{r}\right)}
$$

$$
\int \frac{d x}{r-r \cos x} \int \frac{d x}{\partial+r \sin x}
$$

$(1 .)^{-} 6$
43. $\int \frac{d x}{1-\sin x}$
44. $\int \frac{d x}{1+\sin x+\cos x}$
45. $\int_{0}^{\pi / 2} \frac{d x}{1+\sin x}$
46. $\int_{\pi / 3}^{\pi / 2} \frac{d x}{1-\cos x}$
47. $\int_{0}^{\pi / 2} \frac{d \theta}{2+\cos \theta}$
48. $\int_{\pi / 2}^{2 \pi / 3} \frac{\cos \theta d \theta}{\sin \theta \cos \theta+\sin \theta}$
49. $\int \frac{d t}{\sin t-\cos t}$
50. $\int \frac{\cos t d t}{1-\cos t}$

Use the substitution $z=\tan (\theta / 2)$ to evaluate the integrals in Exercises 51 and 52.
51. $\int \sec \theta d \theta$
52. $\int \csc \theta d \theta$
 تغيير نكنال تغيير متغير 1 امىدهيم.

$$
\begin{aligned}
& \sin ^{r} x=\frac{z^{r}}{1+z^{r}} \quad, \quad d z=\left(1+\tan ^{r} x\right) d x \quad, \quad d x=\frac{d z}{1+z^{r}}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow I=\frac{\sqrt{2}}{2} \tan ^{-1}(\sqrt{2} \tan x)+C \\
& I=\int \frac{d x}{\cos ^{2} x+2 \sin ^{2} x}=\int \frac{d x}{\cos ^{2} x\left(1+2 \tan ^{2} x\right)}=\int \frac{1+\tan ^{2} x}{1+2 \tan ^{2} x}
\end{aligned}
$$

$$
\begin{aligned}
& 1=\int \frac{1}{\cos ^{2} x+2 \sin ^{2} x}=\int \frac{d^{2} u}{\cos ^{2} x\left(1+2 \tan ^{2} x\right)}=\int \frac{1 \cdot \cdots}{1+2 \tan ^{2} x} \\
& \frac{u=\sqrt{2} \tan x}{1+u^{2}}=\frac{\frac{1}{\sqrt{2}} d u}{1} \tan ^{-1} u+c \\
& \int \frac{d x}{\operatorname{asin}^{r} x+\operatorname{bos}^{r} x}
\end{aligned}
$$

Trigonometric Substitutions

$$
\sqrt{a^{2}-x^{2}}, \quad \sqrt{a^{2}+x^{2}} \quad \sqrt{x^{2}-a^{2}}
$$

With $x=a \tan \theta$,

$$
a^{2}+x^{2}=a^{2}+a^{2} \tan ^{2} \theta=a^{2}\left(1+\tan ^{2} \theta\right)=a^{2} \sec ^{2} \theta .
$$

With $x=a \sin \theta$,

$$
a^{2}-x^{2}=a^{2}-a^{2} \sin ^{2} \theta=a^{2}\left(1-\sin ^{2} \theta\right)=a^{2} \cos ^{2} \theta .
$$

With $x=a \sec \theta$,

$$
x^{2}-a^{2}=a^{2} \sec ^{2} \theta-a^{2}=a^{2}\left(\sec ^{2} \theta-1\right)=a^{2} \tan ^{2} \theta .
$$

$x=a \tan \theta$ requires $\quad \theta=\tan ^{-1}\left(\frac{x}{a}\right)$ with $-\frac{\pi}{2}<\theta<\frac{\pi}{2}$,
$x=a \sin \theta$ requires $\theta=\sin ^{-1}\left(\frac{x}{a}\right)$ with $-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$,

$$
x=a \sec \theta \quad \text { requires } \quad \theta=\sec ^{-1}\left(\frac{x}{a}\right) \text { with } \begin{cases}0 \leq \theta<\frac{\pi}{2} & \text { if } \quad \frac{x}{a} \geq 1 \\ \frac{\pi}{2}<\theta \leq \pi & \text { if } \quad \frac{x}{a} \leq-1\end{cases}
$$

$$
\begin{aligned}
& \int \frac{d x}{\sqrt{4+x^{2}}} \cdot x=2 \tan \theta, \quad d x=2 \sec ^{2} \theta d \theta, \quad-\frac{\pi}{2}<\theta<\frac{\pi}{2} \\
& 4+x^{2}=4+4 \tan ^{2} \theta=4\left(1+\tan ^{2} \theta\right)=4 \sec ^{2} \theta \\
& \int \frac{d x}{\sqrt{4+x^{2}}}=\int \frac{2 \sec ^{2} \theta d \theta}{\sqrt{4 \sec ^{2} \theta}}=\int \frac{\sec ^{2} \theta d \theta}{|\sec \theta|}=\int \sec \theta d \theta \quad \sec \theta>0 \text { for }-\frac{\pi}{2}<\theta<\frac{\pi}{2}
\end{aligned}
$$

$$
=\ln |\sec \theta+\tan \theta|+C=\ln \left|\frac{\sqrt{4+x^{2}}}{2}+\frac{x}{2}\right|+C-=\ln |\underbrace{\sqrt{4+x^{2}}+x}|+C^{\prime} .
$$

$2^{\text {nd }}$ wort : $I=\sinh ^{-1}\left(\frac{x}{2}\right)+c=\ln \left(\frac{x}{2}+\sqrt{1+\frac{x^{2}}{4}}\right)+c$

$$
\begin{aligned}
& \int \frac{x^{2} d x}{\sqrt{9-x^{2}}} \cdot \quad x=3 \sin \theta, \quad d x=3 \cos \theta d \theta, \quad-\frac{\pi}{2}<\theta<\frac{\pi}{2} \\
& 9-x^{2}=9-9 \sin ^{2} \theta=9\left(1-\sin ^{2} \theta\right)=9 \cos ^{2} \theta \text {. } \\
& \int \frac{x^{2} d x}{\sqrt{9-x^{2}}}=\int \frac{9 \sin ^{2} \theta \cdot 3 \cos \theta d \theta}{|3 \cos \theta|}=9 \int \sin ^{2} \theta d \theta=9 \int \frac{1-\cos 2 \theta}{2} d \theta=\frac{9}{2}\left(\theta-\frac{\sin 2 \theta}{2}\right)+C \\
& =\frac{9}{2}(\theta-\sin \theta \cos \theta)+C=\frac{9}{2}\left(\sin ^{-1} \frac{x}{3}-\frac{x}{3} \cdot \frac{\sqrt{9-x^{2}}}{3}\right)+C=\frac{9}{2} \sin ^{-1} \frac{x}{3}-\frac{x}{2} \sqrt{9-x^{2}}+C . \\
& \int \frac{d x}{\sqrt{25 x^{2}-4}}, \quad x>\frac{2}{5} . \\
& \sqrt{25 x^{2}-4}=\sqrt{25\left(x^{2}-\frac{4}{25}\right)}=5 \sqrt{x^{2}-\left(\frac{2}{5}\right)^{2}} \\
& x=\frac{2}{5} \sec \theta, \quad d x=\frac{2}{5} \sec \theta \tan \theta d \theta, \quad 0<\theta<\frac{\pi}{2} \\
& x^{2}-\left(\frac{2}{5}\right)^{2}=\frac{4}{25} \sec ^{2} \theta-\frac{4}{25}=\frac{4}{25}\left(\sec ^{2} \theta-1\right)=\frac{4}{25} \tan ^{2} \theta \\
& \sqrt{x^{2}-\left(\frac{2}{5}\right)^{2}}=\frac{2}{5}|\tan \theta|=\frac{2}{5} \tan \theta . \\
& \int \frac{d x}{\sqrt{25 x^{2}-4}}=\int \frac{d x}{5 \sqrt{x^{2}-(4 / 25)}}=\int \frac{(2 / 5) \sec \theta \tan \theta d \theta}{5 \cdot(2 / 5) \tan \theta}=\frac{1}{5} \int \sec \theta d \theta=\frac{1}{5} \ln |\sec \theta+\tan \theta|+C \\
& =\frac{1}{5} \ln \left|\frac{5 x}{2}+\frac{\sqrt{25 x^{2}-4}}{2}\right|+C . \\
& I=\frac{1}{5} \cosh ^{-1}\left(\frac{5 x}{2}\right)+c \text { bo, } \\
& \int_{0}^{2} \frac{d x}{\left(x^{2}+4\right)^{2}} \\
& x=2 \tan \theta, \quad d x=2 \sec ^{2} \theta d \theta, \quad \theta=\tan ^{-1} \frac{x}{2}, \quad x^{2}+4=4 \tan ^{2} \theta+4=4\left(\tan ^{2} \theta+1\right)=4 \sec ^{2} \theta \\
& \int_{0}^{2} \frac{d x}{\left(x^{2}+4\right)^{2}}=\int_{0}^{\pi / 4} \frac{2 \sec ^{2} \theta d \theta}{\left(4 \sec ^{2} \theta\right)^{2}}=
\end{aligned}
$$

$\int_{0}^{2} \frac{d x}{\left(x^{2}+4\right)^{2}} \cdot=\int_{0}^{\pi / 4} \frac{2 \sec ^{2} \theta d \theta}{\left(4 \sec ^{2} \theta\right)^{2}}=$

1. $\int \frac{d y}{\sqrt{9+y^{2}}}$
2. $\int \frac{3 d y}{\sqrt{1+9 y^{2}}}$
3. $\int_{-2}^{2} \frac{d x}{4+x^{2}}$
4. $\int_{0}^{2} \frac{d x}{8+2 x^{2}}$
5. $\int_{0}^{3 / 2} \frac{d x}{\sqrt{9-x^{2}}}$
6. $\int_{0}^{1 / 2 \sqrt{2}} \frac{2 d x}{\sqrt{1-4 x^{2}}}$
7. $\int \sqrt{25-t^{2}} d t$
8. $\int \sqrt{1-9 t^{2}} d t$
9. $\int \frac{d x}{\sqrt{4 x^{2}-49}}, x>\frac{7}{2}$
10. $\int \frac{5 d x}{\sqrt{25 x^{2}-9}}, x>\frac{3}{5}$
11. $\int \frac{\sqrt{y^{2}-49}}{y} d y, \quad y>7$
12. $\int \frac{\sqrt{y^{2}-25}}{y^{3}} d y, \quad y>$:
13. $\int \frac{d x}{x^{2} \sqrt{x^{2}-1}}, x>1$
14. $\int \frac{2 d x}{x^{3} \sqrt{x^{2}-1}}, x>1$
15. $\int \frac{x^{3} d x}{\sqrt{x^{2}+4}}$
16. $\int \frac{d x}{x^{2} \sqrt{x^{2}+1}}$
17. $\int \frac{8 d w}{w^{2} \sqrt{4-w^{2}}}$
18. $\int \frac{\sqrt{9-w^{2}}}{w^{2}} d w$
19. $\int_{0}^{\sqrt{3} / 2} \frac{4 x^{2} d x}{\left(1-x^{2}\right)^{3 / 2}}$
20. $\int_{0}^{1} \frac{d x}{\left(4-x^{2}\right)^{3 / 2}}$
21. $\int \frac{d x}{\left(x^{2}-1\right)^{3 / 2}}, x>1$
22. $\int \frac{x^{2} d x}{\left(x^{2}-1\right)^{5 / 2}}, x>1$
23. $\int \frac{\left(1-x^{2}\right)^{3 / 2}}{x^{6}} d x$
24. $\int \frac{\left(1-x^{2}\right)^{1 / 2}}{x^{4}} d x$
25. $\int \frac{8 d x}{\left(4 x^{2}+1\right)^{2}}$
26. $\int \frac{6 d t}{\left(9 t^{2}+1\right)^{2}}$
27. $\int \frac{v^{2} d v}{\left(1-v^{2}\right)^{5 / 2}}$
28. $\int \frac{\left(1-r^{2}\right)^{5 / 2}}{r^{8}} d r$
29. $\int_{0}^{\ln 4} \frac{e^{t} d t}{\sqrt{e^{2 t}+9}}$
30. $\int_{\ln (3 / 4)}^{\ln (4 / 3)} \frac{e^{t} d t}{\left(1+e^{2 t}\right)^{3 / 2}}$
31. $\int_{1 / 12}^{1 / 4} \frac{2 d t}{\sqrt{t}+4 t \sqrt{t}}$
32. $\int_{1}^{e} \frac{d y}{y \sqrt{1+(\ln y)^{2}}}$
33. $\int \frac{d x}{x \sqrt{x^{2}-1}}$
34. $\int \frac{d x}{1+x^{2}}$
35. $\int \frac{x d x}{\sqrt{x^{2}-1}}$
36. $\int \frac{d x}{\sqrt{1-x^{2}}}$

$$
\int \sin ^{m} x \cos ^{n} x d x \quad(\text { en r }
$$

$m=2 k+4$

$$
\begin{aligned}
& \sin ^{m} x=\sin ^{2 k+1} x=\left(\sin ^{2} x\right)^{k} \sin x=\left(1-\cos ^{2} x\right)^{k} \sin x .
\end{aligned}
$$

$$
\begin{aligned}
& \lessdot \operatorname{m}_{4}^{b} \rightarrow \dot{1} \\
& \cos ^{n} x=\cos ^{2 k+1} x=\left(\cos ^{2} x\right)^{k} \cos x=\left(1-\sin ^{2} x\right)^{k} \cos x .
\end{aligned}
$$

$$
\begin{aligned}
& \sin ^{2} x=\frac{1-\cos 2 x}{2}, \quad \cos ^{2} x=\frac{1+\cos 2 x}{2} \\
& \int \sin ^{3} x \cos ^{2} x d x=\int \sin x \sin ^{2} x \cos ^{2} x d x=\int \sin x\left(1-\cos ^{2} x\right)^{2} \cos ^{2} x d x \\
& \left.\frac{\cos x=u}{-\sin x d x=d u} \int\left(u^{5}-1\right) u^{2} d u=\frac{u^{5}}{5}-\frac{u^{3}}{3}+c=\frac{\cos ^{5} x}{5}+\frac{\cos x}{3}+c\right) \\
& \int \cos ^{5} x d x=\int \cos x \cos ^{4} x d x=\int \cos x\left(1-\sin ^{2} x\right)^{2} d x \\
& \overline{\sin x=u} \int\left(1-u^{r}\right)^{r} d u \quad{ }^{r} \\
& \int \sin ^{2} x \cos ^{4} x d x
\end{aligned}
$$

$$
\begin{aligned}
& \int\left(\frac{1-\cos 2 x}{2}\right)\left(\frac{1+\cos 2 x}{2}\right)^{2} d x=\frac{1}{8} \int(1-\cos 2 x)\left(1+2 \cos 2 x+\cos ^{2} 2 x\right) d x \\
& =\frac{1}{8} \int\left(1+\cos 2 x-\cos ^{2} 2 x-\cos ^{3} 2 x\right) d x=\frac{1}{8}\left[x+\frac{1}{2} \sin 2 x-\int\left(\cos ^{2} 2 x+\cos ^{3} 2 x\right) d x\right] . \\
& \int \cos ^{3} 2 x d x=\int\left(1-\sin ^{2} 2 x\right) \cos 2 x d x=\frac{1}{2} \int\left(1-u^{2}\right) d u=\frac{1}{2}\left(\sin 2 x-\frac{1}{3} \sin ^{3} 2 x\right) \\
& \int \sin ^{2} x \cos ^{4} x d x=\frac{1}{16}\left(x-\frac{1}{4} \sin 4 x+\frac{1}{3} \sin ^{3} 2 x\right)+C . \\
& \int_{0}^{\pi / 4} \sqrt{1+\cos 4 x} d x=\int_{0}^{\frac{\pi}{4}} \sqrt{2 \cos ^{2} 2 x} d x=\left.\frac{\sqrt{2}}{2} \sin 2 x\right|_{0} ^{\pi / 4} \\
& \int \tan ^{4} x d x \\
& (x)=\quad \int \tan ^{4} x d x=\int \tan ^{2} x \cdot \tan ^{2} x d x=\int \tan ^{2} x \cdot\left(\sec ^{2} x-1\right) d x \\
& =\int \tan ^{2} x \sec ^{2} x d x-\int \tan ^{2} x d x=\int \tan ^{2} x \sec ^{2} x d x-\int\left(\sec ^{2} x-1\right) d x \\
& =\int \underbrace{\tan ^{2} x \sec ^{2} x}_{\int u^{\prime} u^{n} d x} d x-\int \sec ^{2} x d x+\int d x=\frac{1}{3} \tan ^{3} x-\tan x+x+C \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \left.=\int \frac{\tan x \sec ^{2} x}{\int u u^{2} d x} d x-\int \tan x d x=\frac{\tan ^{2} x}{2}+|n| \cos x \right\rvert\,+c \\
& \int \sec ^{3} x d x \\
& \int \sec ^{3} x d x=\int \sec x \sec ^{2} x d x=\int \sec x d(\tan x)=\sec x \tan x-\int \tan x d(\sec x)
\end{aligned}
$$

$=\sec x \tan x-\int(\tan x)(\sec x \tan x d x)=\sec x \tan x-\int\left(\sec ^{2} x-1\right) \sec x d x$

$$
=\sec x \tan x+\int \sec x d x-\int \sec ^{3} x d x
$$

$$
2 \int \sec ^{3} x d x=\sec x \tan x+\int \sec x d x
$$

$$
\int \sec ^{3} x d x=\frac{1}{2} \sec x \tan x+\frac{1}{2} \ln |\sec x+\tan x|+C
$$

$\int \sin m x \sin n x d x, \quad \int \sin m x \cos n x d x, \quad$ and $\quad \int \cos m x \cos n x d x$ $\sin m x \sin n x=\frac{1}{2}[\cos (m-n) x-\cos (m+n) x]$ $\sin m x \cos n x=\frac{1}{2}[\sin (m-n) x+\sin (m+n) x]$, $\cos m x \cos n x=\frac{1}{2}[\cos (m-n) x+\cos (m+n) x]$.

1. $\int_{0}^{\pi / 2} \sin ^{5} x d x$
2. $\int_{0}^{\pi} \sin ^{5} \frac{x}{2} d x$
3. $\int_{-\pi / 2}^{\pi / 2} \cos ^{3} x d x$
4. $\int_{0}^{\pi / 6} 3 \cos ^{5} 3 x d x$
5. $\int_{0}^{\pi / 2} \sin ^{7} y d y$
6. $\int_{0}^{\pi / 2} 7 \cos ^{7} t d t$
7. $\int_{0}^{\pi} 8 \sin ^{4} x d x$
8. $\int_{0}^{1} 8 \cos ^{4} 2 \pi x d x$
9. $\int_{-\pi / 4}^{\pi / 4} 16 \sin ^{2} x \cos ^{2} x d x$
10. $\int_{0}^{\pi} 8 \sin ^{4} y \cos ^{2} y d y$
11. $\int_{0}^{\pi / 2} 35 \sin ^{4} x \cos ^{3} x d x$
12. $\int_{0}^{\pi} \sin 2 x \cos ^{2} 2 x d x$
13. $\int_{0}^{\pi / 4} 8 \cos ^{3} 2 \theta \sin 2 \theta d \theta$
14. $\int_{0}^{\pi / 2} \sin ^{2} 2 \theta \cos ^{3} 2 \theta d \theta$
15. $\int_{0}^{2 \pi} \sqrt{\frac{1-\cos x}{2}} d x$
16. $\int_{0}^{\pi} \sqrt{1-\cos 2 x} d x$
17. $\int_{0}^{\pi} \sqrt{1-\sin ^{2} t} d t$
18. $\int_{0}^{\pi} \sqrt{1-\cos ^{2} \theta} d \theta$
19. $\int_{-\pi / 4}^{\pi / 4} \sqrt{1+\tan ^{2} x} d x$
20. $\int_{-\pi / 4}^{\pi / 4} \sqrt{\sec ^{2} x-1} d x$
21. $\int_{0}^{\pi / 2} \theta \sqrt{1-\cos 2 \theta} d \theta$
22. $\int_{-\pi}^{\pi}\left(1-\cos ^{2} t\right)^{3 / 2} d t$
23. $\int_{-\pi / 3}^{0} 2 \sec ^{3} x d x$
24. $\int e^{x} \sec ^{3} e^{x} d x$
25. $\int_{0}^{\pi / 4} \sec ^{4} \theta d \theta$
26. $\int_{0}^{\pi / 12} 3 \sec ^{4} 3 x d x$
27. $\int_{\pi / 4}^{\pi / 2} \csc ^{4} \theta d \theta$
28. $\int_{\pi / 2}^{\pi} 3 \csc ^{4} \frac{\theta}{2} d \theta$
29. $\int_{0}^{\pi / 4} 4 \tan ^{3} x d x$
30. $\int_{-\pi / 4}^{\pi / 4} 6 \tan ^{4} x d x$
31. $\int_{\pi / 6}^{\pi / 3} \cot ^{3} x d x$
32. $\int_{\pi / 4}^{\pi / 2} 8 \cot ^{4} t d t$
33. $\int_{0}^{\pi / 2} \sin 2 x \cos 3 x d x$
34. $\int_{-\pi}^{0} \sin 3 x \cos 2 x d x$

$$
\begin{aligned}
& I=\int_{0}^{\pi} \frac{x \sin x d x}{1+\cos ^{r} x} \rightleftharpoons\left\{\begin{array}{l}
d x=-d u \\
x=0 \Rightarrow u=\pi \\
x=\pi \Rightarrow u
\end{array}\right. \\
& \Rightarrow I=\int_{\pi}^{0} \frac{(\pi-u) \sin u}{1+\cos ^{r} u}(-d u)=\int_{0}^{\pi} \frac{(\pi-u) \sin u}{1+\cos ^{r} u} d u=\int_{0}^{\pi} \frac{\pi \sin u}{1+\cos ^{r} u} d u-\int_{0}^{\pi} \frac{\pi \sin u}{1+\cos ^{r} u} d u \\
& \Rightarrow r I=\pi \int_{\sigma}^{\pi} \frac{\sin u}{1+\cos ^{r} u} d u=-\left.\pi\left(\tan ^{-1}(\cos u)\right)\right|_{0} ^{\pi}=\frac{\pi^{r}}{r}+\frac{\pi^{r}}{r}=\frac{\pi^{r}}{\Gamma} \quad \frac{I}{r} \\
& I=\frac{\pi^{r}}{r}
\end{aligned}
$$

$$
\begin{aligned}
& \int_{0}^{\pi / 2} \ln \sin x d x \\
& I=\frac{\pi}{2}-u \\
& \Rightarrow P I=I+I=\int_{0}^{\frac{\pi}{r}} \ln \sin x d x=\int_{0}^{\frac{\pi}{r}} \ln (\cos u) d u=\int_{0}^{\frac{\pi}{r}} \ln (\cos x) d x \\
& \Rightarrow \sin x+\ln \cos x) d x=\left(\frac{\pi}{r} \ln \left(\frac{\sin \Gamma x}{r}\right) d x\right.
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow P I=I+I=\int_{0}^{\frac{\pi}{r}}(\operatorname{Ln} \sin x+\operatorname{Ln} \cos x) d x=\int_{0}^{\frac{\pi}{r}} \operatorname{Ln}\left(\frac{\sin \Gamma x}{r}\right) d x \\
& =\int_{r}^{\frac{\pi}{r}} \operatorname{Ln}\left(\sin ^{r} x\right)-\int_{0}^{\frac{\pi}{r}} \operatorname{Ln} r d x=\int_{0}^{\frac{\pi}{r}} \operatorname{Ln}(\sin r x)-\frac{\pi}{r} \operatorname{Ln}(r)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Gsina } \Rightarrow r I=I-\frac{\pi}{r} \ln \Gamma \Rightarrow I=-\frac{\pi}{\Gamma} \ln \Gamma \\
& u=\pi-v 2
\end{aligned}
$$

$$
\begin{aligned}
& \int x(2 x+5)^{-1} d x .=\int \frac{x}{r x+\Delta} d x=\int \frac{\frac{r}{r} x+\frac{d}{r}-\frac{d}{r}}{r x+\Delta} d x=\int \frac{\left(\frac{1}{r}(\Gamma x+\Delta)-\frac{\Delta}{r}\right) d x}{r x+\Delta} \\
& =\int \frac{1}{r} d x-\frac{\Delta}{r} \int \frac{d x}{T x+b}=? \\
& \int \frac{d x}{x \sqrt{2 x+4}} . \quad x=t^{r} \quad \text { resis } \quad \int_{0}^{1}\left(v_{0}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \int \frac{d x}{x \sqrt{2 x-4}} . \\
& \int \frac{x}{(a x+b)^{2}} d x \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \int \frac{d x}{x^{2} \sqrt{x^{2}-a^{2}}} \\
& \int \frac{d x}{x^{2} \sqrt{2 x-4}} \\
& \int \frac{x^{2} d x}{\sqrt{1-x^{2}}} \\
& \int x \sin ^{-1} x d x
\end{aligned}
$$

$$
\int \tan ^{n} x d x=\frac{1}{n-1} \tan ^{n-1} x-\int \tan ^{n-2} x d x
$$

$$
\int(\ln x)^{n} d x=x(\ln x)^{n}-n \int(\ln x)^{n-1} d x
$$

$$
\begin{gathered}
\int \sin ^{n} x \cos ^{m} x d x=-\frac{\sin ^{n-1} x \cos ^{m+1} x}{m+n}+\frac{n-1}{m+n} \int \sin ^{n-2} x \cos ^{m} x d x \quad(n \neq-m) \\
\int \cos ^{n} a x d x=\frac{\cos ^{n-1} a x \sin a x}{n a}+\frac{n-1}{n} \int \cos ^{n-2} a x d x
\end{gathered}
$$

Nonelementary Integrals
Integrals of functions that do not have elementary antiderivatives are called nonelementary integrals. integrals such as

$$
\begin{gathered}
\int \sin x^{2} d x \quad \int \sqrt{1+x^{4}} d x \\
\int \frac{e^{x}}{x} d x, \quad \int e^{\left(e^{x}\right)} d x, \quad \int \frac{1}{\ln x} d x, \quad \int \ln (\ln x) d x, \quad \int \frac{\sin x}{x} d x
\end{gathered}
$$

Improper Integrals
تعريف. انتخر ال f(x)dx

ب.

$$
\begin{aligned}
& \int_{0}^{\infty} \frac{e^{-x}}{\sqrt{x}} d x \longrightarrow \quad \text { Fo } \dot{\varepsilon} \dot{\text { m / / }} \\
& \int_{0}^{1} \frac{\sin x}{x} d x \longrightarrow \lim _{x \rightarrow 0} \frac{\sin x}{x}=1 \quad 1 \text { رِد }
\end{aligned}
$$

$$
\int_{a}^{\infty} f(x) d x=\lim _{x \rightarrow \infty} \int_{a}^{x} f(t) d t . \quad \text { : }
$$

اگر حد طرف راست وجود داشته باشد گوييم انتّرا ال ناسره

$$
\begin{aligned}
& =\int_{-\infty}^{a} f(x) d x=\lim _{x \rightarrow-\infty} \int_{x}^{a} f(t) d t
\end{aligned}
$$

$$
\begin{aligned}
& \int_{-\infty}^{\infty} f(x) d x=\int_{-\infty}^{a} f(x) d x+\int_{a}^{\infty} f(x) d x=\lim _{x \rightarrow-\infty} \int_{x}^{a} f(t) d t+\lim _{x \rightarrow \infty} \int_{a}^{x} f(t) d t .
\end{aligned}
$$

$$
\begin{aligned}
& \lim _{x \rightarrow \infty}\left[\int_{-x}^{a} f(t) d t+\int_{a}^{x} f(t) d t\right], \lim _{x \rightarrow-\infty} \int_{x}^{a} f(t) d t+\lim _{x \rightarrow \infty} \int_{a}^{x} f(t) d t \text { : تذر ممهم } \\
& \text { لزوما با هم برابر نيستند } \\
& \int_{1}^{\infty} \frac{d x}{x^{2}}=\lim _{b \rightarrow \infty} \int_{1}^{b} \frac{d x}{x^{2}}=\lim _{b \rightarrow \infty}\left(1-\frac{1}{b}\right)=1 \text { so that } \int_{1}^{\infty} \frac{d x}{x^{2}} \underbrace{(-)}_{\text {converges to } 1 .} \\
& \int_{-\infty}^{u} \cos x d x=\lim _{a \rightarrow-\infty} \int_{a}^{u} \cos x d x=\lim _{a \rightarrow-\infty}(\sin u-\sin a) \text {, } \\
& \int_{0}^{+\infty} \frac{d x}{x^{r}+r}=\lim _{b \rightarrow+\infty} \int_{0}^{b} \frac{d x}{x^{r}+r}=\left.\lim _{b \rightarrow+\infty} \frac{1}{r} \operatorname{arctg} \frac{x}{r}\right|_{0} ^{b}=\lim _{b \rightarrow+\infty} \frac{1}{r} \operatorname{arctg} \frac{b}{r}=\frac{\pi}{r}
\end{aligned}
$$

$$
\begin{aligned}
& \int^{\infty} \frac{d x}{x^{p}} \longrightarrow \text { 元 } \quad P>1 \text {, } \quad \text {, }
\end{aligned}
$$

$$
\begin{aligned}
& \int_{0}^{+\infty} e^{-x} \sin x d x \\
& \int_{0}^{+\infty} e^{-x} \sin x d x=\lim _{b \rightarrow+\infty} \int_{0}^{b} e^{-x} \sin x d x=\left.\lim _{b \rightarrow+\infty} \frac{-1}{r} e^{-x}(\sin x+\cos x)\right|_{0} ^{b} \\
& =\lim _{b \rightarrow+\infty}\left[-\frac{1}{r} e^{-b}(\sin b+\cos b)+\frac{1}{r}(0+1)\right]=0+\frac{1}{r}=\frac{1}{r} \\
& \int_{-\infty}^{\circ} e^{r x} d x \\
& \left.\|^{\infty}\right) \lim _{a \rightarrow-\infty} \int_{a}^{\circ} e^{r x} d x=\left.\lim _{a \rightarrow-\infty} \frac{1}{r} e^{r x}\right|_{a} ^{\circ}=\lim _{a \rightarrow-\infty} \frac{1}{r}\left(1-e^{r a}\right)=\frac{1}{r}-\circ=\frac{1}{r} \\
& \int_{-\infty}^{+\infty} \frac{d x}{x^{r}-4 x+9} \\
& \text { (b) } \int \frac{d x}{x^{r}-r x+9}=\int \frac{d x}{(x-r)^{r}+0}=\frac{1}{\sqrt{\omega}} \operatorname{arctg} \frac{x-r}{\sqrt{\Delta}} \\
& \int_{-\infty}^{\circ} \frac{d x}{x^{r}-r x+9}=\lim _{a \rightarrow-\infty} \int_{a}^{\circ} \frac{d x}{x^{r}-r x+9}=\left.\lim _{a \rightarrow-\infty} \frac{1}{\sqrt{\omega}} \operatorname{arctg} \frac{x-r}{\sqrt{\omega}}\right|_{a} ^{\circ} \\
& \left.=\lim _{a \rightarrow-\infty} \frac{1}{\sqrt{\partial}}\left[\operatorname{arctg}\left(\frac{-r}{\sqrt{\partial}}\right)-\operatorname{arctg}\left(\frac{a-r}{\sqrt{\partial}}\right)\right]=\frac{1}{\sqrt{\partial}}\left[\operatorname{arctg}\left(\frac{-r}{\sqrt{\partial}}\right)-\left(\frac{-\pi}{r}\right)\right]\right] \\
& \begin{array}{l}
\text {, } \int_{0}^{+\infty} \frac{d x}{x^{r}-r x+9}=\lim _{b \rightarrow+\infty} \int_{0}^{b} \frac{d x}{x^{r}-r x+9}=\frac{1}{\sqrt{\partial}}\left[\frac{\pi}{r}-\arctan \left(\frac{-r}{\sqrt{\omega}}\right)\right] \\
, 2) \rightarrow \int_{-\infty}^{+\infty} \frac{d x}{x^{r}-r x+9}=\int_{-\infty}^{0} \frac{d x}{x^{r}-r x+9}+\int_{0}^{+\infty} \frac{d x}{x^{r}-r x+9}=\frac{1}{\sqrt{\omega}}\left(\frac{\pi}{r}+\frac{\pi}{r}\right)=\frac{\pi}{\sqrt{\omega}}
\end{array} \\
& \int_{-\infty}^{+\infty} r x^{r} e^{x^{r}} d x \\
& \int_{-\infty}^{+\infty} r x^{r} e^{x^{r}} d x=\int_{-\infty}^{\infty} r x^{r} e^{x^{r}} d x+\int_{0}^{+\infty} r x^{r} e^{x^{r}} d x \\
& \int_{-\infty}^{\circ} r x^{r} e^{x^{r}}=\lim _{a \rightarrow-\infty} \int_{a}^{\circ} r x^{r} e^{x^{r}}=\lim _{a \rightarrow-\infty} e^{x^{r}}| |_{a}^{\circ}=\lim _{a \rightarrow-\infty}\left(1-e^{a^{r}}\right)=1 \\
& \int_{0}^{+\infty} r x^{r} e^{x^{r}} d x=\lim _{a \rightarrow+\infty} \int_{0}^{b} r x^{r} e^{x^{r}} d x=\lim _{a \rightarrow+\infty}\left(e^{b^{r}}-1\right)=+\infty
\end{aligned}
$$

$$
\int_{0}^{+\infty} r x^{r} e^{x^{r}} d x=\lim _{a \rightarrow+\infty} \int_{0}^{b} r x^{r} e^{x^{r}} d x=\lim _{a \rightarrow+\infty}\left(e^{b^{r}}-1\right)=+\infty
$$

:
الف) اگر $\int_{a}^{+\infty} g(x) d x$ هم $\int_{a}^{+\infty} f(x) d x$ نيز همیرا است. ب) اگر
\qquad
. \int_{0} since oo $\frac{1}{x^{2}\left(1+e^{x}\right)}<\frac{1}{x^{2}}$ and as $\int_{1}^{\infty} \frac{d x}{x^{2}}$ is cavergent herce $\int \frac{d x}{x^{\infty}\left(x+1+e^{x}\right)}<\infty$ i.e. it is conveferent.
 since on $[1, \infty) \quad \frac{1}{x^{\frac{1}{2}}}=\frac{1}{\sqrt{x}}=\frac{x}{\sqrt{x^{2}}}<\frac{x+1}{\sqrt{z^{2}}}$ $\int_{1}^{\infty} \frac{1}{x^{2}} d x$ is divergent $\underset{\substack{1,10}}{\infty} \int_{1}^{\infty} \frac{x+1}{\sqrt{x^{3}}} d x$ is diverent

Since $\frac{1}{e^{x}+1} \leqq \frac{1}{e^{x}}=e^{-x}$ and $\int_{0}^{\infty} e^{-x} d x$ converges, $\int_{0}^{\infty} \frac{d x}{e^{x}+1}$ also converges. Since $\frac{1}{\ln x}>\frac{1}{x}$ for $x \geqq 2$ and $\int_{2}^{\infty} \frac{d x}{x}$ diverges (p integral with $p=1$), $\int_{2}^{\infty} \frac{d x}{\ln x}$ also diverges.

آزمون مقايسه حدى.

$$
\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=A \quad \text { فرض كنيد براى توابع نامنغى } \mathrm{g} \text { و } \mathrm{g} \text { واشته باشيم:: }
$$

 ب. اگر A= A و اگر
مثال. نوع انتخرال
(p > انمگر است لذا انتخرال مسئله همخرا است.

Let $\lim _{x \rightarrow \infty} x^{p} f(x)=A$. Then
(i) $\int_{a}^{\infty} f(x) d x$ converges if $p>1$ and A is finite
(ii) $\int_{a}^{\infty} f(x) d x$ diverges if $p \leqq 1$ and $A \neq 0$ (A may be infinite).

$$
\int_{0}^{\infty} \frac{x^{2} d x}{4 x^{4}+25} \text { converges since } \lim _{x \rightarrow \infty} x^{2} \cdot \frac{x^{2}}{4 x^{4}+25}=\frac{1}{4}
$$

$$
\int_{0}^{\infty} \frac{x d x}{\sqrt{x^{4}+x^{2}+1}} \text { diverges since } \lim _{x \rightarrow \infty} x \cdot \frac{x}{\sqrt{x^{4}+x^{2}+1}}=1
$$

Absolute and conditional convergence. $\int_{a}^{\infty} f(x) d x$ is called absolutely convergent if $\int_{a}^{\infty}|f(x)| d x$ converges. If $\int_{a}^{\infty} f(x) d x$ converges but $\int_{a}^{\infty}|f(x)| d x$ diverges, then $\int_{a}^{\infty} f(x) d x$ is called conditionally convergent.

Theorem 2. If $\int_{a}^{\infty}|f(x)| d x$ converges, then $\int_{a}^{\infty} f(x) d x$ converges. In words, an absolutely convergent integral converges.

$$
\begin{equation*}
\int_{0}^{\infty}\left|\frac{\sin x}{x}\right| d x=\sum_{n=0}^{\infty} \int_{n \pi}^{(n+1) \pi}\left|\frac{\sin x}{x}\right| d x=\sum_{n=0}^{\infty} \int_{0}^{\pi} \frac{\sin v}{v+n \pi} d v \tag{I}
\end{equation*}
$$

Now $\frac{1}{v+n \pi} \geqq \frac{1}{(n+1) \pi}$ for $0 \leqq v \leqq \pi$. Hence,

$$
\begin{equation*}
\int_{0}^{\pi} \frac{\sin v}{v+n \pi} d v \geqq \frac{1}{(n+1) \pi} \int_{9}^{\pi} \sin v d v=\frac{2}{(n+1) \pi} \tag{2}
\end{equation*}
$$

Since $\sum_{n=0}^{\infty} \frac{2}{(n+1) \pi}$ diverges, the series on the right of (I) diverges by the comparison test. Hence, $\int_{0}^{\infty}\left|\frac{\sin x}{x}\right| d x$ diverges and the required result follows.

IMPROPER INTEGRALS OF THE SECOND KIND

$$
\begin{aligned}
& \int_{a}^{b} f(x) d x=\lim _{\epsilon \rightarrow 0+} \int_{a+\epsilon}^{b} f(x) d x \\
& \int_{a}^{b} f(x) d x=\lim _{\epsilon \rightarrow 0+} \int_{a}^{b-\epsilon} f(x) d x
\end{aligned}
$$

Note: Be alert to the word unbounded. This is distinct from undefined. For example, $\int_{0}^{1} \frac{\sin x}{x} d x=$ $\lim _{\epsilon \rightarrow 0} \int_{\epsilon}^{1} \frac{\sin x}{x} d x$ is a proper integral, since $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$ and hence is bounded as $x \rightarrow 0$ even though the function is undefined at $x=0$. In such case the integral on the left of 6 is called convergent or divergent according as the limit on the right exists or does not exist.

$$
\int_{a}^{b} f(x) d x=\lim _{\epsilon_{1} \rightarrow 0+} \int_{a}^{x_{0}-\epsilon_{1}} f(x) d x+\lim _{\epsilon_{2} \rightarrow 0+} \int_{x_{0}+\epsilon_{2}}^{b} f(x) d x
$$

.

CAUCHY PRINCIPAL VALUE
by choosing $\epsilon_{1}=\epsilon_{2}=\epsilon$

$$
\int_{a}^{b} f(x) d x=\lim _{\epsilon \rightarrow 0+}\left\{\int_{a}^{x_{0}-\epsilon} f(x) d x+\int_{x_{0}+\epsilon}^{b} f(x) d x\right\}
$$

$$
\begin{aligned}
\int_{-1}^{5} \frac{d x}{(x-1)^{3}} & =\lim _{\epsilon_{1} \rightarrow 0+} \int_{-1}^{1-\epsilon_{1}} \frac{d x}{(x-1)^{3}}+\lim _{\epsilon_{2} \rightarrow 0+} \int_{1+\epsilon_{2}}^{5} \frac{d x}{(x-1)^{3}} \\
& =\lim _{\epsilon_{1} \rightarrow 0+}\left(\frac{1}{8}-\frac{1}{2 \epsilon_{1}^{2}}\right)+\lim _{\epsilon_{2} \rightarrow 0+}\left(\frac{1}{2 \epsilon_{2}^{2}}-\frac{1}{32}\right) \Rightarrow-
\end{aligned}
$$

($-1,1,1$, 6

1. $\int_{a}^{b} \frac{d x}{(x-a)^{p}} \underbrace{\text { converges if } p<1}$ and diverges if $p \geqq 1$.
2. $\int_{a}^{b} \frac{d x}{(b-x)^{p}}$ converges if $p<1$ and diverges if $p \geqq 1$.

Let $\lim _{x \rightarrow a+}(x-a)^{p} f(x)=A$. Then $\quad=1$ alula f ri ski
(i) $\int_{a}^{b} f(x) d x$ converges if $p<1$ and A is finite
(ii) $\int_{a}^{b} f(x) d x$ diverges if $p \geqq 1$ and $A \neq 0$ (A may be infinite).

Let $\lim _{x \rightarrow b-}(b-x)^{p} f(x)=B$. Then
$\int_{a}^{b} f(x) d x$ converges if $p<1$ and B is finite
$\int_{a}^{b} f(x) d x$ diverges if $p \geqq 1$ and $B \neq 0$ (B may be infinite).
$\int_{1}^{5} \frac{d x}{\sqrt{x^{4}-1}}$ converges, since $\lim _{x \rightarrow 1+}(x-1)^{1 / 2} \cdot \frac{1}{\left(x^{4}-1\right)^{1 / 2}}=\lim _{x \rightarrow 1+} \sqrt{\frac{x-1}{x^{4}-1}}=\frac{1}{2}$.
$\int_{0}^{3} \frac{d x}{(3-x) \sqrt{x^{2}+1}}$ diverges, since $\lim _{x \rightarrow 3-}(3-x) \cdot \frac{1}{(3-x) \sqrt{x^{2}+1}}=\frac{1}{\sqrt{10}}$.

Investigate the convergence of:
(a) $\int_{2}^{3} \frac{d x}{x^{2}\left(x^{3}-8\right)^{2 / 3}}$
(c) $\int_{1}^{5} \frac{d x}{\sqrt{(5-x)(x-1)}}$
(e) $\int_{0}^{\pi / 2} \frac{d x}{(\cos x)^{1 / n}}, n>1$.
(b $\int_{0}^{\pi} \frac{\sin x}{x^{3}} d x$
(d) $\int_{-1}^{1} \frac{2^{\sin ^{-1} x}}{1-x} d x$

Show how to transform the improper integral of the second kind, $\int_{1}^{2} \frac{d x}{\sqrt{x(2-x)}}$, into
(a) an improper integral of the first kind, (b) a proper integral
(a) an improper integral of the first kind, (b) a $\underbrace{}_{\text {proper }}$ integral. $\underbrace{\int_{1} \sqrt{x(2-x)}}$
a) Consider $\int_{1}^{2-\epsilon} \frac{d x}{\sqrt{x(2-x)}}$ where $0<\epsilon<1$, say. Let $2-x=\frac{1}{y}$.

1 Letting $2-x=v^{2}$ in the integral of (a), it becomes $2 \int_{\sqrt{\epsilon}}^{1} \frac{d v}{\sqrt{v^{2}+2}}$.

Prove that $\int_{0}^{\infty} e^{-x^{2}} d x$ converges.

$$
\int_{a}^{b}|f(x)-g(x)| d x
$$

$$
\begin{gathered}
\sqrt{x}=x^{r} \Rightarrow x=0,1 \\
\int_{0}^{1}\left(\sqrt{x}-x^{r}\right) d x=?
\end{gathered}
$$

$$
\int_{c}^{d}|f(y)-g(y)| d y \quad \text { برابر است با }
$$

 $G \bar{G}$
 و توسط صفخح، xy از لائين محدود است را مححاسبه كنيم.

اين سطح مقطع در نقطه [a, $[$ [$x \in$ بصورت تابع (x) بيانشود

Volume of a Pyramid

$$
\left.V=\int_{0}^{3} A(x) d x=\int_{0}^{3} x^{2} d x=\frac{x^{3}}{3}\right]_{0}^{3}=9 \mathrm{~m}^{3}
$$

فرض كنيم كره طورى قرار كرفته است كه مركز آن در مبدأ مختتصات باشد

$$
L^{L}
$$

$$
\Rightarrow A(x)=\pi\left(r^{r}-x^{r}\right)
$$

$$
\int_{-r}^{r} A(x) d x=\frac{\beta}{r} \pi r^{r}
$$

 روش وجود دارد كه عبارتند از روش برشى (روش واشرى) و روش لايهاى استوانیانى

$$
\begin{aligned}
& \text { (-1) } \\
& V=\int_{a}^{b} A(x) d x \text {. }
\end{aligned}
$$

 فرمول زير براى حجم حاصل از دوران ناحيه A A حول محور x ها ما حاصل مىشود.

$$
V=\int_{a}^{b} A(x) d x=\int_{a}^{b} \pi[R(x)]^{2} d x .
$$

(a)

$$
\begin{aligned}
& V=\int_{a}^{b} \pi[R(x)]^{2} d x=\int_{0}^{4} \pi[\sqrt{x}]^{2} d x \\
& \left.=\pi \int_{0}^{4} x d x=\pi \frac{x^{2}}{2}\right]_{0}^{4}=\pi \frac{(4)^{2}}{2}=8 \pi .
\end{aligned}
$$

EXAMPLE 5 Volume of a Sphere

$V=\int_{1}^{4} \pi[R(x)]^{2} d x=\int_{1}^{4} \pi[\sqrt{x}-1]^{2} d x=\pi \int_{1}^{4}[x-2 \sqrt{x}+1] d x=\frac{7 \pi}{6}$.

EXAMPLE 7 Rotation About the y-Axis

$$
V=\int_{1}^{4} \pi[R(y)]^{2} d y=\int_{1}^{4} \pi\left(\frac{2}{y}\right)^{2} d y=3 \pi
$$

$V=\int_{-\sqrt{2}}^{\sqrt{2}} \pi[R(y)]^{2} d y=\int_{-\sqrt{2}}^{\sqrt{2}} \pi\left[2-y^{2}\right]^{2} d y=\frac{64 \pi \sqrt{2}}{15}$.

Solids of Revolution: The Washer Method
 $A(x)=\pi\left(R(x)^{\gamma}-r(x)^{r}\right)-\frac{1}{2}$

Outer radius: $\quad R(x)$
Inner radius: $r(x)$
$A(x)=\pi[R(x)]^{2}-\pi[r(x)]^{2}=\pi\left([R(x)]^{2}-[r(x)]^{2}\right)$.
$V=\int_{a}^{b} A(x) d x=\int_{a}^{b} \pi\left([R(x)]^{2}-[r(x)]^{2}\right) d x$
$!=$

حجبم حاصل از دوران ناحيه A مححدود به منحينى $y=x^{r}$ و خطوط $x=0$ و $x=1$ را بدست آوريد.
$x^{\mu}=1 \Rightarrow x=\Gamma$

$$
x^{2}+1=-x+3 \Longrightarrow x=-2, \quad x=1
$$

$$
V=\int_{a}^{b} \pi\left([R(x)]^{2}-[r(x)]^{2}\right) d x=\int_{-2}^{1} \pi\left((-x+3)^{2}-\left(x^{2}+1\right)^{2}\right) d x=\frac{117 \pi}{5}
$$

A Washer Cross-Section (Rotation About the y-Axis)

The region bounded by the parabola $y=x^{2}$ and the line $y=2 x$ in the first quadrant is revolved about the y-axis to generate a solid. Find the volume of the solid.

(a)

$$
V=\int_{c}^{d} \pi\left([R(y)]^{2}-[r(y)]^{2}\right) d y=\int_{0}^{4} \pi\left([\sqrt{y}]^{2}-\left[\frac{y}{2}\right]^{2}\right) d y=\frac{8}{3} \pi
$$

Volumes by Cylindrical Shells روش لايدهاى استوانهاى.

Vertical axis of revolution

;共
 (. M.
 $-2003 \cos ^{2}=1$,
 Vertical axis
of revolution

$$
\begin{aligned}
& \pi\left(x_{k}-L\right)^{r} f\left(c_{k}\right)-\pi\left(x_{k-1}-L\right)^{r} f\left(c_{k}\right) \\
= & r \pi f\left(c_{k}\right)\left(c_{k}-L\right) \Delta x_{k}=\Delta v_{k}
\end{aligned}
$$

$$
a=x_{0}<x_{1}<\ldots<x_{n}=b \div l[a, b] \quad 0 ; 1
$$

$$
\int_{a}^{b} 2 \pi(x-L) f(x) d x
$$

$$
V=\int_{a}^{b} 2 \pi \frac{\binom{\text { shell }}{\text { radius }}}{\varepsilon^{l^{b}}} \frac{\binom{\text { shell }}{\text { height }}}{\varepsilon^{-e^{2}}} d x .
$$

.

$$
V=\int_{0}^{4} 2 \pi(x)(\sqrt{x}) d x=\frac{128 \pi}{5}
$$

路

محور yها را محتوان با تفاضل ححمها بصورت زير بدست آورد.

$V=\int_{0}^{1} r \pi x\left[\sqrt{x}-x^{r}\right] d x=\frac{r \pi}{\Delta}$
Y. Y. دوران حول محور xها.
$V=\int_{0}^{1} r \pi y\left[\sqrt[r]{y}-y^{r}\right] d y=\frac{\Delta \pi}{1 ヶ}$

$$
\begin{aligned}
& \text { را با روش لايهماى استوانهانى بلست آوريد. } \\
& \text { ا. دوران حول محور yها. }
\end{aligned}
$$

1.

3.

2.

4.

6. The y-axis

促
'

a. The x-axis
b. The line $y=1$
c. The line $y=8 / 5$
d. The line $y=-2 / 5$

a. The x-axis
b. The line $y=2$
c. The line $y=5$
d. The line $y=-5 / 8$

Length of a Parametrically Defined Curve
Let C be a curve given parametrically by the equations

$$
x=f(t) \quad \text { and } \quad y=g(t), \quad a \leq t \leq b .
$$

طول قوس منحنىى
$e \leq t \leqslant 2 \pi$

$$
\begin{aligned}
& \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}}=\sqrt{9 \cos ^{2} t \sin ^{2} t(\underbrace{\cos ^{2} t+\sin ^{2} t})} \\
& =\sqrt{9 \cos ^{2} t \sin ^{2} t}=3 \cos t \sin t . \quad \begin{array}{l}
\cos t \sin t \geq 0 \text { for } \\
0 \leq t \leq \pi / 2
\end{array} \\
& \Rightarrow \int_{0}^{\frac{\pi}{\Gamma}} r \cos t \sin t d t=\%
\end{aligned}
$$

Length of a Curve $y=f(x)$

If f is continuously differentiable on the closed interval $[a, b]$, the length of the curve (graph) $y=f(x)$ from $x=a$ to $x=b$ is

$$
L=\int_{a}^{b} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x=\int_{a}^{b} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x
$$

Find the length of the curve

$$
\begin{aligned}
& y=\frac{4 \sqrt{2}}{3} x^{3 / 2}-1, \quad 0 \leq x \leq 1 \\
& 0
\end{aligned}
$$

$L=\int_{0}^{1} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x=\int_{0}^{1} \sqrt{1+8 x} d x=\frac{13}{6}$

Formula for the Length of $x=g(y), \quad c \leq y \leq d$
If g is continuously differentiable on $[c, d]$, the length of the curve $x=g(y)$
from $y=c$ to $y=d$ is

$$
\int_{e}^{d} \sqrt{1+\left(\frac{d x}{d y}\right)^{r}}
$$

Example;
Find the length of the curve $y=(x / 2)^{2 / 3}$ from $x=0$ to $x=2$.

$x^{\prime}=3 \sqrt{y} \quad \quad$ 1, $\quad x=2 y^{\frac{3}{2}} \quad \because r^{\prime 2}+\sim$
$L=\int_{c}^{d} \sqrt{1+\left(\frac{d x}{d y}\right)^{2}} d y=\int_{0}^{1} \sqrt{1+9 y} d y=\frac{2}{27}(10 \sqrt{10}-1) \approx 2.27$.

7. $y=(1 / 3)\left(x^{2}+2\right)^{3 / 2}$ from $x=0$ to $x=3$
8. $y=x^{3 / 2}$ from $\quad x=0$ to $x=4$
9. $x=\left(y^{3} / 3\right)+1 /(4 y)$ from $y=1$ to $y=3$
(Hint: $1+(d x / d y)^{2}$ is a perfect square.)
10. $x=\left(y^{3 / 2} / 3\right)-y^{1 / 2}$ from $y=1$ to $y=9$
(Hint: $1+(d x / d y)^{2}$ is a perfect square.)
11. $x=\left(y^{4} / 4\right)+1 /\left(8 y^{2}\right)$ from $y=1$ to $y=2$
(Hint: $1+(d x / d y)^{2}$ is a perfect square.)
12. $x=\left(y^{3} / 6\right)+1 /(2 y)$ from $y=2$ to $y=3$
(Hint: $1+(d x / d y)^{2}$ is a perfect square.)
13. $y=(3 / 4) x^{4 / 3}-(3 / 8) x^{2 / 3}+5, \quad 1 \leq x \leq 8$
14. $y=\left(x^{3} / 3\right)+x^{2}+x+1 /(4 x+4), \quad 0 \leq x \leq 2$
15. $x=\int_{0}^{y} \sqrt{\sec ^{4} t-1} d t, \quad-\pi / 4 \leq y \leq \pi / 4$
16. $y=\int_{-2}^{x} \sqrt{3 t^{4}-1} d t, \quad-2 \leq x \leq-1$

Areas of Surfaces of Revolution

سطح جانبى حاصل از دوران يك منحنى

فرض كنيم دوران $a \leq x \leq b ، y=f(x)$ حول محور $a \leq$ ها بوسيله فرمول زير بدست مىآيد

$$
S=\int_{a}^{b} 2 \pi y \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x=\int_{a}^{b} 2 \pi f(x) \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x
$$

(عنصر ديفرانسيل طول قوس) (شعاع دوران) $d A=r \pi$ عنصر ديفرانسيل سطح جانبى

در حالتى كه دوران يك منحنى حول محور yها صورت گيرد سطح جانبى حاصل از دوران اين منحنى با تعويض متغيرهاى x و y بصورت زير حاصل مىشود. $A=\int_{a}^{b} \upharpoonright \pi x \sqrt{1+\left(\frac{d x}{d y}\right)^{r} d x}$

مساحت جانبیى وويه حاصل از دوران منحنىى

$$
a=1, \quad b=2, \quad y=2 \sqrt{x}, \quad \frac{d y}{d x}=\frac{1}{\sqrt{x}}
$$

$$
\sqrt{1+\left(\frac{d y}{d x}\right)^{2}}=\sqrt{1+\left(\frac{1}{\sqrt{x}}\right)^{2}}=\sqrt{1+\frac{1}{x}}=\sqrt{\frac{x+1}{x}}=\frac{\sqrt{x+1}}{\sqrt{x}} .
$$

$S=\int_{a}^{b} 2 \pi y \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x=\int_{1}^{2} 2 \pi \cdot 2 \sqrt{x} \frac{\sqrt{x+1}}{\sqrt{x}} d x=4 \pi \int_{1}^{2} \sqrt{x+1} d x=\frac{8 \pi}{3}(3 \sqrt{3}-2 \sqrt{2})$.

The line segment $x=1-y, 0 \leq y \leq 1$, is revolved about the y-axis to generate a cene.
find its surface

$$
\begin{gathered}
S=\int_{c}^{d} 2 \pi x \sqrt{1+\left(\frac{d x}{d y}\right)^{2}} d y=\int_{0}^{1} 2 \pi(1-y) \sqrt{2} d y \\
=\pi \sqrt{2}
\end{gathered}
$$

Surface Area of Revolution for Parametrized Curves

If a smooth curve $x=f(t), y=g(t), a \leq t \leq b$, is traversed exactly once as t increases from a to b, then the areas of the surfaces generated by revolving the curve about the coordinate axes are as follows.

1. Revolution about the x-axis $(y \geq 0)$:

$$
\begin{equation*}
S=\int_{a}^{b} 2 \pi y \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t \tag{5}
\end{equation*}
$$

2. Revolution about the y-axis $(x \geq 0)$:

$$
\begin{equation*}
S=\int_{a}^{b} 2 \pi x \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t \tag{6}
\end{equation*}
$$

Infinite SEQUENces and Series

DEFINITION Infinite Sequence

$$
b s_{1 / 2}
$$

DEFINITION Diverges to Infinity

The sequence $\left\{a_{n}\right\}$ diverges to infinity if for every number M there is an integer N such that for all n larger than $N, a_{n}>M$. If this condition holds we write

$$
\lim _{n \rightarrow \infty} a_{n}=\infty \quad \text { or } \quad a_{n} \rightarrow \infty
$$

Similarly if for every number m there is an integer N such that for all $n>N$ we have $a_{n}<m$, then we say $\left\{a_{n}\right\}$ diverges to negative infinity and write

$$
\lim _{n \rightarrow \infty} a_{n}=-\infty \quad \text { or } \quad a_{n} \rightarrow-\infty
$$

THEOREM 1

Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be sequences of real numbers and let A and B be real numbers.
The following rules hold if $\lim _{n \rightarrow \infty} a_{n}=A$ and $\lim _{n \rightarrow \infty} b_{n}=B$.

1. Sum Rule:

$$
\lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=A+B
$$

2. Difference Rule:

$$
\lim _{n \rightarrow \infty}\left(a_{n}-b_{n}\right)=A-B
$$

3. Product Rule:

$$
\lim _{n \rightarrow \infty}\left(a_{n} \cdot b_{n}\right)=A \cdot B
$$

4. Constant Multiple Rule: $\quad \lim _{n \rightarrow \infty}\left(k \cdot b_{n}\right)=k \cdot B \quad$ (Any number k)
5. Quotient Rule:

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\frac{A}{B} \quad \text { if } B \neq 0
$$

THEOREM 2 The Sandwich Theorem for Sequences

Let $\left\{a_{n}\right\},\left\{b_{n}\right\}$, and $\left\{c_{n}\right\}$ be sequences of real numbers. If $a_{n} \leq b_{n} \leq c_{n}$ holds for all n beyond some index N, and if $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} c_{n}=L$, then $\lim _{n \rightarrow \infty} b_{n}=L$ also.
(a) $\frac{\cos n}{n} \rightarrow 0 \quad$ because $\quad-\frac{1}{n} \leq \frac{\cos n}{n} \leq \frac{1}{n}$;
(b) $\frac{1}{2^{n}} \rightarrow 0 \quad$ because $\quad 0 \leq \frac{1}{2^{n}} \leq \frac{1}{n}$;
(c) $(-1)^{n} \frac{1}{n} \rightarrow 0 \quad$ because $\quad-\frac{1}{n} \leq(-1)^{n} \frac{1}{n} \leq \frac{1}{n}$.

Example: If $b_{n}=\left[\frac{1}{(n+1)^{2}}+\frac{1}{(n+2)^{2}}+\cdots+\frac{1}{(2 n)^{2}}\right]$, find $\lim _{n \rightarrow \infty} b_{n}$

Evidently $\frac{n}{(2 n)^{2}} \leqslant b_{n} \leqslant \frac{n}{n^{2}}$, for each $n \in \mathbb{N}$.

$$
\Rightarrow \lim _{n \rightarrow \infty} b_{n}=0
$$

$$
\Rightarrow \lim _{n \rightarrow \infty} b_{n}=0
$$

Ex. If $b_{n}=\left\{\frac{1}{\sqrt{n^{2}+1}}+\frac{1}{\sqrt{n^{2}+2}}+\cdots+\frac{1}{\sqrt{n^{2}+n}}\right\}=\sum_{k=1}^{n} \frac{1}{\sqrt{n^{2}+k}}$, show that $\lim _{n \rightarrow \infty} b_{n}=1$

Ex. Shew that i) $\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{1}{n^{2}+k}=0$, ii) $\lim _{k=1} \sum_{k=1}^{n} \frac{1}{n+k}=\infty$

- $a_{n} \geqslant M \quad n$ g 多 oko

$$
\left|a_{n}-a_{m}\right|<\varepsilon \quad \quad m, n \geqslant n .
$$

- Méer

$\lim _{x \rightarrow a} f(x)=1 \quad$ -

$$
f\left(a_{n}\right) \rightarrow L
$$

㞓 F f $(x)=\frac{x+1}{x}$ 不
心 $\left.\frac{n+1}{n}=1+\frac{1}{n} \quad ; \beta, \alpha_{1}\right)$ ）（ $f^{\prime}(x)<0$ o品

$d \in E$, ，

Show that $\sqrt{(n+1) / n} \rightarrow 1$ ．

The Sequence $\left\{2^{1 / n}\right\}$

l＇Hôpital＇s Rule
THEOREM 4
Suppose that $f(x)$ is a function defined for all $x \geq n_{0}$ and that $\left\{a_{n}\right\}$ is a sequence of real numbers such that $a_{n}=f(n)$ for $n \geq n_{0}$ ．Then

$$
\lim _{x \rightarrow \infty} f(x)=L \quad \Rightarrow \quad \lim _{n \rightarrow \infty} a_{n}=L
$$

Show that $\lim _{n \rightarrow \infty} \frac{\ln n}{n}=0$ ．

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{\ln n}{n}=0 \quad \text { vil }
\end{aligned}
$$

Find $\lim _{n \rightarrow \infty} \frac{2^{n}}{5 n}$ ．

$$
1 \ldots \quad 2^{x} \quad 1 \ldots \quad 2^{x} \ln 2
$$

$$
\begin{aligned}
& \text { Find } \begin{array}{l}
\lim _{n \rightarrow \infty} \frac{-}{5 n} . \\
\qquad \lim _{x \rightarrow \infty} \frac{2^{x}}{5 x}=\lim _{x \rightarrow \infty} \frac{2^{x} \ln 2}{5}=\infty \\
\lim _{x \rightarrow \infty}\left(\frac{n+1}{n-1}\right)^{n}=? \\
\lim _{x \rightarrow \infty}\left(\frac{x+1}{x-1}\right)^{x}=\lim _{x \rightarrow \infty} e^{x \ln \left(\frac{x+1}{x-1}\right)}=e^{2} \\
\text { since }=2
\end{array} \lim _{x \rightarrow \infty} \frac{\ln \left(\frac{x+1}{x-1}\right)}{\frac{1}{x}}=\lim _{x \rightarrow \infty} \frac{\frac{-2}{x^{2}-1}}{\frac{-1}{x^{2}}}=2
\end{aligned}
$$

Commonly Occurring Limits

1. $\lim _{n \rightarrow \infty} \frac{\ln n}{n}=0$
2. $\lim _{n \rightarrow \infty} x^{1 / n}=1 \quad(x>0)$
3. $\lim _{n \rightarrow \infty} \sqrt[n]{n}=1$
4. $\lim _{n \rightarrow \infty} x^{n}=0 \quad(|x|<1)$
5. $\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}=e^{x} \quad($ any $x)$
6. $\lim _{n \rightarrow \infty} \frac{x^{n}}{n!}=0 \quad($ any $x)$
(a) $\frac{\ln \left(n^{2}\right)}{n}=\frac{2 \ln n}{n} \rightarrow 2 \cdot 0=0$
(b) $\sqrt[n]{n^{2}}=n^{2 / n}=\left(n^{1 / n}\right)^{2} \rightarrow(1)^{2}=1$
(c) $\sqrt[n]{3 n}=3^{1 / n}\left(n^{1 / n}\right) \rightarrow 1 \cdot 1=1$
(d) $\left(-\frac{1}{2}\right)^{n} \rightarrow 0$
(e) $\left(\frac{n-2}{n}\right)^{n}=\left(1+\frac{-2}{n}\right)^{n} \rightarrow e^{-2}$
(f) $\frac{100^{n}}{n!} \rightarrow 0$

$$
\lim _{n \rightarrow \infty}\left(\frac{a_{1}+a_{r}+i n+a_{n}}{n}\right)=L
$$

-, وail, $\lim _{n \rightarrow \infty} \theta_{n}=L$, uee

जog limbodo

$$
b=\left\{\frac{1}{1}+\frac{1}{1}+\cdots+\frac{1}{}\right\}=\sum^{n}
$$

$$
b_{n}=\left\{\frac{1}{\sqrt{n^{2}+1}}+\frac{1}{\sqrt{n^{2}+2}}+\cdots+\frac{1}{\sqrt{n^{2}+n}}\right\}=\sum_{k=1}^{n} \frac{1}{\sqrt{n^{2}+k}}
$$

$$
\begin{aligned}
\text { Let } Q_{k}=\frac{n}{\sqrt{n^{2}+k}}, & k=1,2, \ldots, n \\
& \Rightarrow \lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} a_{n}=\lim \frac{n}{\sqrt{n^{2}+n}}=\lim \frac{1}{\sqrt{1+\frac{1}{n}}}=1
\end{aligned}
$$

$$
\lim b_{n}=\lim \frac{\frac{n}{\sqrt{n^{2}+1}}+\frac{n}{\sqrt{n^{2}+2}}+\cdots+\frac{n}{\sqrt{n^{2}+n}}}{n}=1
$$

$$
w \operatorname{lol} \lim \frac{(n!)^{\frac{1}{n}}}{n} \quad \sim \operatorname{col}
$$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left[\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}+\cdots+\frac{1}{\sqrt{2 n}}\right]=\infty \\
& \lim \frac{1}{n}\left[1+\frac{1}{2}+\cdots+\frac{1}{n}\right]=0 \\
& \lim \left[\frac{1}{n^{2}}+\frac{1}{(n+1)^{2}}+\cdots+\frac{1}{(2 n)^{2}}\right]=0
\end{aligned}
$$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left(a_{1} a_{2} \cdots a_{n}\right)^{\frac{1}{n}}=L \\
& (n)^{\frac{1}{n}}=\left(1 \cdot \frac{2}{1} \cdot \frac{3}{2} \cdot \frac{4}{3} \cdots \frac{n}{n-1}\right)^{\frac{1}{n}} \\
& \text { - } \lim _{n \rightarrow \infty} \sqrt[n]{n}=1 \quad \underline{\sim} \infty
\end{aligned}
$$

$$
\begin{aligned}
& \sim \sim
\end{aligned}
$$

Stirling's approximation $\sqrt[n]{n!} \approx \frac{n}{e}$ for large values of n.

$$
\begin{aligned}
& a_{n}=\frac{2^{n} 3^{n}}{n!} \Rightarrow \lim _{n}=\lim _{n \rightarrow \infty} \frac{\sigma^{n}}{n!}=\infty \\
& a_{n}=\frac{(2 n+3)!}{(n+1)!}=\frac{r n!(\Gamma n+r)(\Gamma n+r)(\Gamma n+1)}{n!(n+\pi)} \rightarrow \infty \\
& \operatorname{rn!}=\operatorname{rn}(\operatorname{Tn}-1)(\Gamma n-r) \ldots(\Gamma n-n)!_{0}
\end{aligned}
$$

Suppose that $f(x)$ is differentiable for all x in $[0,1]$ and that $f(0)=0$. Define the sequence $\left\{a_{n}\right\}$ by the rule $a_{n}=n f(1 / n)$. Show that $\lim _{n \rightarrow \infty} a_{n}=f^{\prime}(0)$.

$$
a_{n}=n \tan -\frac{1}{n}=? \quad f(n)=\operatorname{tg}^{-1} a \Rightarrow f^{\prime}(0)=?
$$

$$
\begin{aligned}
& a_{n}=n \tan ^{-1} \frac{1}{n}=\quad f(x)=7 g(x \Rightarrow+(0)=. \\
& a_{n}=n\left(e^{1 / n}-1\right)= \\
& a_{n}=n \ln \left(1+\frac{2}{n}\right)=
\end{aligned}
$$

.
 $a_{1}=1$ and $a_{n}=a_{n-1}+1$

$$
a_{1}=1, r_{2}=2, a_{3}=6, a_{4}=24, \ldots, a_{n}=n!
$$

$$
1,1,2,3,5,8, \ldots
$$

Fibonacci inlis
.

$a_{1}=\sqrt{2}<2$ let $a_{k}<2$ then $a_{k+1}=\sqrt{2+a_{k}}<\sqrt{4}=2$

$a_{1}=\sqrt{2}<\sqrt{2+\sqrt{2}}=a_{2}$. Let $a_{k}<a_{k+1}$ then $a_{k+1}=\sqrt{2+a_{k}}$
$<\sqrt{2+a}=a \quad \Rightarrow\left(-\sim^{1} 12+0 \omega_{i}\right)$

85Page رياضى 1 دانشگاه فردوسى استاد امين خسروى

$$
<\sqrt{2}+\bar{a}_{k+1}=a_{k+2} \quad \Rightarrow<v^{\prime} \sec \mu_{k}
$$

$$
\left\{\begin{array}{l}
L_{1}=2 \\
L_{2}=-1 \\
\bar{U} \dot{\varphi} \dot{\varepsilon}
\end{array}\right.
$$

Infinite Series
$L^{2}-L-2=0 / j=\sqrt{2+L}$
(phinti, bocs,
Infinite Series
roselés imb

$$
s_{1}=a_{1}, s_{r}=a_{1}+a_{r},-\cdots, s_{n}=a_{1}+a_{r}+\cdots+a_{n}, \cdots
$$

$$
\begin{aligned}
& \sum_{n=1}^{\infty} a_{n}=\lim _{n \rightarrow \infty}\left(s_{n}\right)=\lim _{n \rightarrow \infty}\left(\sum_{k=1}^{n} a_{k}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { (U) } h_{0} \\
& \sum_{k=m}^{n}\left(\frac{1}{r_{k+1}}-\frac{1}{r_{k+w}}\right)=\frac{1}{r_{m+1}}-\frac{1}{r_{n+}+r^{r}} \\
& \text { n } k k+1 \text { mos } 15 k \geq 60, \pi
\end{aligned}
$$

Find the sum of the series $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$.

$$
\begin{aligned}
& \text { ن́lj } \frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1} \quad \text { milsce (ln } \\
& \sum_{n=1}^{\infty} \frac{1}{n(n+1)}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(\frac{1}{k(k+1)}\right)=\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(\frac{1}{k}-\frac{1}{k+1}\right) \\
& =\lim _{n \rightarrow \infty}\left(\frac{1}{1}-\frac{1}{n+1}\right)=1 \Rightarrow \sum_{n=1}^{\infty} \frac{1}{n(n+1)}=1 \\
& \sum_{n=1}^{\infty} \frac{1}{(n+1)(n+2)} \rightarrow \dot{U}_{-}^{-} \\
& \sum_{n=1}^{\infty} \frac{5}{n(n+1)} \longrightarrow \bar{\sigma}_{6}
\end{aligned}
$$

Geometric Series

$$
\begin{aligned}
& a+a r+a r^{2}+\cdots+a r^{n-1}+\cdots=\sum_{n=1}^{\infty} a r^{n-1} \\
& \sum_{n=1}^{\infty} a r^{n-1}=\frac{a}{1-r}, \quad|r|<1 . \quad \text { If }|r| \geq 1 \text {, the series diverges. } \\
& \sum_{n=0}^{\infty} a r^{n}=\frac{a}{1-r} \\
& \sum_{n=1}^{\infty} \frac{1}{9}\left(\frac{1}{3}\right)^{n-1}=\frac{1 / 9}{1-(1 / 3)}=\frac{1}{6} . \\
& \sum_{n=0}^{\infty} \frac{(-1)^{n} 5}{4^{n}}=\frac{5}{1+(1 / 4)}=4 \\
& \text { (-i, 年, máar, (n) } \quad \lim R=0
\end{aligned}
$$

(a) $\sum_{n=1}^{\infty} n^{2}$ diverges because $n^{2} \rightarrow \infty$
(c) $\sum_{n=1}^{\infty}(-1)^{n+1}$ diverges because $\lim _{n \rightarrow \infty}(-1)^{n+1}$ does not exist
(b) $\sum_{n=1}^{\infty} \frac{n+1}{n}$ diverges because $\frac{n+1}{n} \rightarrow 1$
(d) $\sum_{n=1}^{\infty} \frac{-n}{2 n+5}$ diverges because $\lim _{n \rightarrow \infty} \frac{-n}{2 n+5}=-\frac{1}{2} \neq 0$.

If $\sum a_{n}=A$ and $\sum b_{n}=B$ are convergent series, then

1. Sum Rule:

$$
\begin{aligned}
& \sum\left(a_{n}+b_{n}\right)=\sum a_{n}+\sum b_{n}=A+B \\
& \sum\left(a_{n}-b_{n}\right)=\sum a_{n}-\sum b_{n}=A-B
\end{aligned}
$$

2. Difference Rule:
3. Constant Multiple Rule:
$\sum k a_{n}=k \sum a_{n}=k A \quad($ Any number $k)$.

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{3^{n-1}-1}{6^{n-1}}=\sum_{n=1}^{\infty}\left(\frac{1}{2^{n-1}}-\frac{1}{6^{n-1}}\right)=\sum_{n=1}^{\infty} \frac{1}{2^{n-1}}-\sum_{n=1}^{\infty} \frac{1}{6^{n-1}}=\frac{1}{1-(1 / 2)}-\frac{1}{1-(1 / 6)} \\
& \sum_{n=0}^{\infty} \frac{4}{2^{n}}=4 \sum_{n=0}^{\infty} \frac{1}{2^{n}}=8
\end{aligned}
$$

If $\sum_{n=1}^{\infty} a_{n}$ converges, then $\sum_{n=k}^{\infty} a_{n}$ converges for any $k>1$ and

$$
\sum_{n=1}^{\infty} a_{n}=a_{1}+a_{2}+\cdots+a_{k-1}+\sum_{n=k}^{\infty} a_{n}
$$

Reindexing

$$
\begin{aligned}
& \begin{aligned}
\sum_{n=1}^{\infty} a_{n}= & \sum_{n=1+h}^{\infty} a_{n-h} \rightarrow \text { an jj h hold } \\
& \text { on h }
\end{aligned} \\
& \sum_{n=1}^{\infty} a_{n}=\sum_{n=1-h}^{\infty} a_{n+h}
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{n=-1}^{\infty} \frac{1}{(n+3)(n+4)}=\sum_{n=1}^{\infty} \frac{1}{(n+1)(n+r)}=c
\end{aligned}
$$

9. $\sum_{n=1}^{\infty} \frac{7}{4^{n}}$
10. $\sum_{n=0}^{\infty}(-1)^{n} \frac{5}{4^{n}}$
11. $\sum_{n=0}^{\infty}\left(\frac{5}{2^{n}}+\frac{1}{3^{n}}\right)$
12. $\sum_{n=0}^{\infty}\left(\frac{5}{2^{n}}-\frac{1}{3^{n}}\right)$
13. $\sum_{n=0}^{\infty}\left(\frac{1}{2^{n}}+\frac{(-1)^{n}}{5^{n}}\right)$
14. $\sum_{n=0}^{\infty}\left(\frac{2^{n+1}}{5^{n}}\right)$
15. $\sum_{n=1}^{\infty} \frac{4}{(4 n-3)(4 n+1)}$
16. $\sum_{n=1}^{\infty} \frac{6}{(2 n-1)(2 n+1)}$
17. $\sum_{n=1}^{\infty} \frac{40 n}{(2 n-1)^{2}(2 n+1)^{2}}$
18. $\sum_{n=1}^{\infty} \frac{2 n+1}{n^{2}(n+1)^{2}}$
19. $\sum_{n=1}^{\infty}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)$
20. $\sum_{n=1}^{\infty}\left(\frac{1}{2^{1 / n}}-\frac{1}{2^{1 /(n+1)}}\right)$
21. $\sum_{n=1}^{\infty}\left(\frac{1}{\ln (n+2)}-\frac{1}{\ln (n+1)}\right)$
22. $\sum_{n=1}^{\infty}\left(\tan ^{-1}(n)-\tan ^{-1}(n+1)\right)$

$$
\underset{\sim}{\sim} \sum_{k=1}^{\infty} \frac{r}{k(k+1)(k+r)}\left(5 \mu^{N}+1 \bar{\mu}_{0}\right.
$$

$$
\begin{aligned}
& \frac{r}{k(k+1)(k+r)}=\frac{1}{k(k+1)}-\frac{1}{(k+1)(k+r)} \\
\Rightarrow & S_{n}=\sum_{k=1}^{n} \frac{r}{k(k+1)(k+r)}=\sum_{k=1}^{n}\left(\frac{1}{k(k+1)}-\frac{1}{(k+1)(k+r)}\right)=\frac{1}{r}-\frac{1}{(n+1)(n+r)} \\
\Rightarrow & \sum_{n=1}^{\infty} \frac{r}{n(n+1)(n+r)}=\lim _{n \rightarrow \infty} s_{n}=\frac{1}{r}
\end{aligned}
$$

$$
0, r=1-\sum_{n=1}^{\infty} \frac{1}{9 n^{r}+r_{n}-r} \quad \operatorname{lo} b
$$

$$
S_{n}=\sum_{k=1}^{n} \frac{1}{(r k-1)(w k+r)}=\frac{1}{\mu} \sum_{k=1}^{n}\left(\frac{1}{\psi k-1}-\frac{1}{r k+r}\right)=\frac{1}{r}\left(\frac{1}{r}-\frac{1}{r n+r}\right) \rightarrow \frac{1}{4}
$$

$$
\left|a_{n+1}+a_{n+r}+\ldots+a_{n+p}\right|<\epsilon
$$

The Harmonic Series $\quad \sum_{n=1}^{\infty} \frac{1}{n}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}+\cdots$

$$
\text { - - } \underbrace{\prime \prime})^{\prime \prime} \text { (}
$$

فرض كنيد

$$
\left|\frac{1}{n+1}+\frac{1}{n+r}+\ldots+\frac{1}{n+p}\right|<\frac{1}{r}
$$

عدد صحيح

$$
\begin{aligned}
& \text { - } \\
& \frac{1}{k(k+r)}=\frac{k+1}{k(k+1)(k+r)}=\frac{(k+r)-1}{k(k+1)(k+r)}=\frac{1}{k(k+1)}-\frac{1}{k(k+1)(k+r)} \\
& \Rightarrow \sum_{n=1}^{\infty} \frac{1}{n(n+r)}=\sum_{n=1}^{\infty} \frac{1}{n(n+1)}-\sum_{n=1}^{\infty} \frac{1}{n(n+1)(n+r)}=1-\frac{1}{r}=\frac{r}{r} \\
& \text {. } \sqrt{2}-\infty \text {) } \sum_{n=r}^{\infty} \frac{r n-1}{n^{r}(n-1)^{r}} \text { (fols } \\
& s_{n}=\sum_{k=1}^{n} \frac{r k-1}{k^{r}(k-1)^{r}}=\sum_{k=r}^{n}\left(\frac{1}{(k-1)^{r}}-\frac{1}{k^{r}}\right)=1-\frac{1}{n^{r}} \longrightarrow 1 \quad(J) \\
& \Rightarrow \sum_{n=r}^{\infty} \frac{r n-1}{n^{r}(n-1)^{r}}=1
\end{aligned}
$$

$$
\frac{1}{m+1}+\frac{1}{m+r}+\ldots+\frac{1}{m+m} \geq \frac{m}{r m}=\frac{1}{r}
$$

$$
\begin{aligned}
& \text { انتكال } \\
& \text {. } p>1 \text {, Sh }
\end{aligned}
$$

(b) $\sum_{1}^{\infty} \frac{n}{n^{2}+1}$;
(c) $\sum_{2}^{\infty} \frac{1}{n \ln n}$;
(d) $\sum_{1}^{\infty} n e^{-n^{2}}$.

Cauchy's Condensation Criterion. Suppose that $a_{1} \geq a_{2} \geq \cdots \geq 0$. Then the series $\sum_{n=1}^{\infty} a_{n}$ is convergent if and only if the series

$$
\sum_{n=0}^{\infty} 2^{n} a_{2^{n}}=a_{1}+2 a_{2}+4 a_{4}+8 a_{8}+\cdots
$$

is convergent.
$\infty \quad \sum_{n=r} n(\log n)^{n}, \ldots$
ja) $\sum_{n=1}^{\infty} p^{n} \frac{1}{r^{n}\left(\log r^{n}\right)^{p}}=\sum_{n=1}^{\infty} \frac{1}{(n \log r)^{p}}=\frac{1}{(\log r)^{p}} \sum_{n=1}^{\infty} \frac{1}{n^{p}}$

$$
\begin{aligned}
& \text { الف) } \\
& \text { ب(ب) }
\end{aligned}
$$

EXAMPLE. Since $\frac{1}{2^{n}+1} \leqq \frac{1}{2^{n}}$ and $\sum \frac{1}{2^{n}}$ converges, $\sum \frac{1}{2^{n}+1}$ also converges.
EXAMPLE. Since $\frac{1}{\ln n}>\frac{1}{n}$ and $\sum_{n=2}^{\infty} \frac{1}{n}$ diverges, $\sum_{n=2}^{\infty} \frac{1}{\ln n}$ also diverges.
vo - bor

The Limit-Comparison or Quotient Test for series of non-negative terms.
(a) If $u_{n} \geqq 0$ and $v_{n} \geqq 0$ and if $\lim _{n \rightarrow \infty} \frac{u_{n}}{v_{n}}=A \neq 0$ or ∞, then Σu_{n} and Σv_{n} either both converge or both diverge.
(b) If $A=0$ in (a) and Σv_{n} converges, then Σu_{n} converges.
(c) If $A=\infty$ in (a) and Σv_{n} diverges, then Σu_{n} diverges.

Let $\lim _{n \rightarrow \infty} n^{p} u_{n}=A$. Then
(i) Σu_{n} converges if $p>1$ and A is finite.
(ii) Σu_{n} diverges if $p \leqq 1$ and $A \neq 0(A$ may be infinite $)$.

EXAMPLES. 1. $\sum \frac{n}{4 n^{3}-2}$ converges since $\lim _{n \rightarrow \infty} n^{2} \cdot \frac{n}{4 n^{3}-2}=\frac{1}{4}$.
2. $\sum \frac{\ln n}{\sqrt{n+1}}$ diverges since $\lim _{n \rightarrow \infty} n^{1 / 2} \cdot \frac{\ln n}{(n+1)^{1 / 2}}=\infty$.
(a) $\sum_{n=1}^{\infty} \frac{4 n^{2}-n+3}{n^{3}+2 n}$,
(b) $\sum_{n=1}^{\infty} \frac{n+\sqrt{n}}{2 n^{3}-1}$,
(c) $\sum_{n=1}^{\infty} \frac{\ln n}{n^{2}+3}$.
$\sum_{n=1}^{\infty} e^{-n^{2}}$

$\lim _{n \rightarrow \infty} n^{3} \sin ^{3}\left(\frac{1}{n}\right)=1$
$n^{2} e^{-n^{2}} \rightarrow 0 \quad e^{n^{2}}>n^{2} \Rightarrow e^{-n^{2}}<\frac{1}{n^{2}}$

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}
$$

$$
\underbrace{\prime} \underbrace{\prime}=\sim \underbrace{=}_{\text {,gail, }}
$$

(a) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1} n}{n^{2}+1}$,
(b) $\sum_{n=2}^{\infty} \frac{(-1)^{n-1}}{n \ln ^{2} n}$,
(c) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1} 2^{n}}{n^{2}}$.

Ratio test. Let $\lim _{n \rightarrow \infty}\left|\frac{u_{n+1}}{u_{n}}\right|=L$. Then the series $\Sigma u_{n} \quad \sqrt{-\quad .1}$
(a) converges (absolutely) if $L<1$
(b) diverges if $L>1$.

If $L=1$ the test fails.

$$
\sum_{n=0}^{\infty} \frac{2^{n}+5}{3^{n}}
$$

$$
\begin{aligned}
& \frac{a_{n+1}}{a_{n}}=\frac{\left(2^{n+1}+5\right) / 3^{n+1}}{\left(2^{n}+5\right) / 3^{n}}=\frac{1}{3} \cdot \frac{2^{n+1}+5}{2^{n}+5}=\frac{1}{3} \cdot\left(\frac{2+5 \cdot 2^{-n}}{1+5 \cdot 2^{-n}}\right) \rightarrow \frac{1}{3} \cdot \frac{2}{1}=\frac{2}{3} . \\
& \sum_{n=1}^{\infty} \frac{(2 n)!}{n!n!}
\end{aligned}
$$

$$
\begin{gathered}
\text { If } a_{n}=\frac{(2 n)!}{n!n!} \text {, then } a_{n+1}=\frac{(2 n+2)!}{(n+1)!(n+1)!} \text { and } \\
\frac{a_{n+1}}{a_{n}}=\frac{n!n!(2 n+2)(2 n+1)(2 n)!}{(n+1)!(n+1)!(2 n)!}=\frac{(2 n+2)(2 n+1)}{(n+1)(n+1)}=\frac{4 n+2}{n+1} \rightarrow 4
\end{gathered}
$$

$$
\sum_{n=1}^{\infty} \frac{4^{n} n!n!}{(2 n)!}
$$

$$
\frac{a_{n+1}}{a_{n}}=\frac{4^{n+1}(n+1)!(n+1)!}{(2 n+2)(2 n+1)(2 n)!} \cdot \frac{(2 n)!}{4^{n} n!n!}=\frac{4(n+1)(n+1)}{(2 n+2)(2 n+1)}=\frac{2(n+1)}{2 n+1} \rightarrow 1
$$

$$
\because \because .
$$

$$
\frac{\left(n+1 q^{n+1}\right.}{n q^{n}}=q+\frac{q}{n} \quad l-1 / \frac{a_{n+1}}{a_{n}} \quad \text { obi } a_{n}=n q^{n} \quad \text { il }\left(C b_{0}^{2}\right.
$$

$$
\underset{(1)}{\infty} \mid
$$

$$
\sum_{n=1}^{\infty} n q^{n}=\frac{q}{(q-1)^{r}} \quad\left(\frac{--\bar{s})}{}\right.
$$

$$
\text { Jjof } \sum_{n=1}^{\infty} \frac{n}{r^{n}}=\frac{\frac{1}{r}}{\left(\frac{r}{r}-1\right)^{r}}=r
$$

The \boldsymbol{n} th root test. Let $\lim _{n \rightarrow \infty} \sqrt[n]{\left|u_{n}\right|}=L$. Then the series Σu_{n}

(a) converges (absolutely) if $L<1$
(A) di..........efr $\quad 1$

The \boldsymbol{n} th root test. Let $\lim _{n \rightarrow \infty} \sqrt[n]{\left|u_{n}\right|}=L$. Then the series Σu_{n}
(a) converges (absolutely) if $L<1$
(b) diverges if $L>1$.

If $L=1$ the test fails.
$\sum_{n=1}^{\infty} \frac{n^{2}}{2^{n}}$ converges because $\sqrt[n]{\frac{n^{2}}{2^{n}}}=\frac{\sqrt[n]{n^{2}}}{\sqrt[n]{2^{n}}}=\frac{(\sqrt[n]{n})^{2}}{2} \rightarrow \frac{1}{2}<1$
$\sum_{n=1}^{\infty} \frac{2^{n}}{n^{2}}$ diverges because $\sqrt[n]{\frac{2^{n}}{n^{2}}}=\frac{2}{(\sqrt[n]{n})^{2}} \rightarrow \frac{2}{1}>1$
$\sum_{n=1}^{\infty}\left(\frac{1}{1+n}\right)^{n}$ converges because $\sqrt[n]{\left(\frac{1}{1+n}\right)^{n}}=\frac{1}{1+n} \rightarrow 0<1$.

Let $a_{n}=\left\{\begin{array}{ll}n / 2^{n}, & n \text { odd } \\ 1 / 2^{n}, & n \text { even. }\end{array} \quad\right.$ Does $\sum a_{n}$ converge?

$$
\sqrt[n]{a_{n}}=\left\{\begin{array}{rl}
\sqrt[n]{n} / 2, & n \text { odd } \\
1 / 2, & n \text { even } .
\end{array} \quad \frac{1}{2} \leq \sqrt[n]{a_{n}} \leq \frac{\sqrt[n]{n}}{2}\right.
$$

$\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}=1 / 2$ by the Sandwich Theorem.

1. $\sum_{n=1}^{\infty} \frac{n^{\sqrt{2}}}{2^{n}}$
2. $\sum_{n=1}^{\infty} n^{2} e^{-n}$
3. $a_{1}=2, \quad a_{n+1}=\frac{1+\sin n}{n} a_{n}$
4. $\sum_{n=1}^{\infty} n!e^{-n}$
5. $\sum_{n=1}^{\infty} \frac{n!}{10^{n}}$
6. $a_{1}=1, \quad a_{n+1}=\frac{1+\tan ^{-1} n}{n} a_{n}$
7. $\sum_{n=1}^{\infty} \frac{n^{10}}{10^{n}}$
8. $\sum_{n=1}^{\infty}\left(\frac{n-2}{n}\right)^{n}$
9. $a_{1}=\frac{1}{3}, \quad a_{n+1}=\frac{3 n-1}{2 n+5} a_{n}$
10. $a_{1}=3, \quad a_{n+1}=\frac{n}{n+1} a_{n}$
11. $\sum_{n=1}^{\infty} \frac{2+(-1)^{n}}{1.25^{n}}$
12. $\sum_{n=1}^{\infty} \frac{(-2)^{n}}{3^{n}}$
13. $a_{1}=2, \quad a_{n+1}=\frac{2}{n} a_{n}$
14. $\sum_{n=1}^{\infty}\left(1-\frac{3}{n}\right)^{n}$
15. $\sum_{n=1}^{\infty}\left(1-\frac{1}{3 n}\right)^{n}$
16. $a_{1}=5, \quad a_{n+1}=\frac{\sqrt[n]{n}}{2} a_{n}$
17. $\sum_{n=1}^{\infty} \frac{\ln n}{n^{3}}$
18. $\sum_{n=1}^{\infty} \frac{(\ln n)^{n}}{n^{n}}$
19. $\sum_{n=1}^{\infty}\left(\frac{1}{n}-\frac{1}{n^{2}}\right)$
20. $\sum_{n=1}^{\infty}\left(\frac{1}{n}-\frac{1}{n^{2}}\right)^{n}$
21. $a_{1}=1, \quad a_{n+1}=\frac{1+\ln n}{n} a_{n}$
22. $a_{1}=\frac{1}{2}, \quad a_{n+1}=\frac{n+\ln n}{n+10} a_{n}$
23. $a_{1}=\frac{1}{3}, \quad a_{n+1}=\sqrt[n]{a_{n}}$
24. $\sum_{n=1}^{\infty} \frac{n \ln n}{2^{n}}$
25. $a_{1}=\frac{1}{2}, \quad a_{n+1}=\left(a_{n}\right)^{n+1}$
26. $\sum_{n=1}^{\infty} \frac{(n+1)(n+2)}{n!}$
27. $\sum_{n=1}^{\infty} e^{-n}\left(n^{3}\right)$
28. $\sum_{n=1}^{\infty} \frac{(n+3)!}{3!n!3^{n}}$
29. $\sum_{n=1}^{\infty} \frac{n 2^{n}(n+1)!}{3^{n} n!}$
30. $a_{n}=\frac{2^{n} n!n!}{(2 n)!}$
31. $\sum_{n=1}^{\infty} \frac{\ln n}{n}$
32. $\sum_{n=1}^{\infty} \frac{n!}{n^{n}}$
33. $\sum_{n=2}^{\infty} \frac{n}{(\ln n)^{n}}$
34. $\sum_{n=2}^{\infty} \frac{n}{(\ln n)^{(n / 2)}}$
35. $\sum_{n=1}^{\infty} \frac{n!\ln n}{n(n+2)!}$
36. $\sum_{n=1}^{\infty} \frac{3^{n}}{n^{3} 2^{n}}$
37. $a_{n}=\frac{(3 n)!}{n!(n+1)!(n+2)!}$
38. $\sum_{n=1}^{\infty} \frac{n!}{(2 n+1)!}$
39. $\sum_{n=1}^{\infty} \frac{(n!)^{n}}{\left(n^{n}\right)^{2}}$
40. $\sum_{n=1}^{\infty} \frac{(n!)^{n}}{n^{\left(n^{2}\right)}}$
41. $\sum_{n=1}^{\infty} \frac{n^{n}}{2^{\left(n^{2}\right)}}$
42. $\sum_{n=1}^{\infty} \frac{n^{n}}{\left(2^{n}\right)^{2}}$
43. $\sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot \cdots \cdot(2 n-1)}{4^{n} 2^{n} n!}$
44. $\sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot \cdots \cdot(2 n-1)}{[2 \cdot 4 \cdot \cdots \cdot(2 n)]\left(3^{n}+1\right)}$

Raabe's test. Let $\lim _{n \rightarrow \infty}\left(1-\left|\frac{u_{n}+1}{u_{n}}\right|\right)=L$. Then the series Σu_{n}
(a) converges (absolutely) if $L>1$
(b) diverges or converges conditionally if $L<1$.

If $L=1$ the test fails.
This test is often used when the ratio tests fails.

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{4^{n} n!n!}{(2 n)!} \\
& \frac{a_{n+1}}{a_{n}}=\frac{2(n+1)}{2 n+1} \rightarrow 1-\frac{a_{n+1}}{a_{n}}=\frac{-1}{2 n+1} \\
& \Rightarrow \lim _{n} n\left(1-\left|\frac{a_{n+1}}{a_{n}}\right|\right)=\lim _{n \rightarrow \infty} \frac{-n}{2 n+1}=\frac{-1}{2}<1 \Rightarrow 1,1,15 n^{n}
\end{aligned}
$$

Test for convergence $\left(\frac{1}{3}\right)^{2}+\left(\frac{1 \cdot 4}{3 \cdot 6}\right)^{2}+\left(\frac{1 \cdot 4 \cdot 7}{3 \cdot 6 \cdot 9}\right)^{2}+\cdots+\left(\frac{1 \cdot 4 \cdot 7 \ldots(3 n-2)}{3 \cdot 6 \cdot 9 \ldots(3 n)}\right)^{2}+\cdots$.
The ratio test fails since $\lim _{n \rightarrow \infty}\left|\frac{u_{n+1}}{u_{n}}\right|=\lim _{n \rightarrow \infty}\left(\frac{3 n+1}{3 n+3}\right)^{2}=1$. However, by Raabe's test,
$\lim _{n \rightarrow \infty} n\left(1-\left|\frac{u_{n+1}}{u_{n}}\right|\right)=\lim _{n \rightarrow \infty} n\left\{1-\left(\frac{3 n+1}{3 n+3}\right)^{2}\right\}=\frac{4}{3}>1 \quad$ and so the series converges.

$$
\begin{aligned}
& \text { • } \underset{\sim}{\sim}, b^{\prime /}(\cdot,)^{-1}
\end{aligned}
$$

$$
\begin{aligned}
& \text {. - ו! } \\
& \text { - } \sum_{n=1}^{\infty} \frac{n^{n}}{e^{n} n!} \text { (s,w (s) (llo } \\
& \frac{a_{n+1}}{a_{n}}=\left(\frac{n+1}{n}\right)^{n} \frac{1}{e} \longrightarrow 1 \\
& j \sqrt[n]{a_{n}} \rightarrow 1 \text { (.jpis); }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{a_{n}}{a_{n+1}}=\left(\frac{n}{n+1}\right)^{n} \cdot e \Rightarrow n \log \frac{a_{n}}{a_{n+1}}=n \log \left(\left(\frac{n}{n+1}\right)^{n} \cdot e\right)=n\left[1-n \cdot \log \left(1+\frac{1}{n}\right)\right]
\end{aligned}
$$

.

$$
\text { برایى } x \in \mathbb{R} \text { رفتار سـسى }
$$

b) $\left.\quad\left|\frac{\cos (n x)}{n^{\top}}\right| \leq\left.\frac{1}{n^{\top}} \Rightarrow e^{\prime}\right|_{j p} ^{\prime} \right\rvert\, j, \underbrace{}_{j}$

AMC قـُ

$$
\begin{aligned}
& \text {. }
\end{aligned}
$$

- קصورْ . - $11<a_{n} b_{n}$

$$
\text { 1, }-\operatorname{l}^{1} \int_{-\infty} \sum\left[\left(n^{\mu}+1\right)^{\frac{1}{\mu}}-n\right] \quad(d v
$$

$$
\left(n^{r}+1\right)^{\frac{1}{r}}-n=\frac{1}{\left(n^{r}+1\right)^{\frac{\Gamma}{r}}+\left(n^{r}+1\right)^{\frac{T}{r}} n+n^{\Gamma}}
$$

$$
\cdots-11 \equiv \sum a_{n} b_{n}
$$

- 1 $\theta \neq 0, \operatorname{rm\pi }$ Go,

$$
\begin{aligned}
& s_{n}=\sum_{k=1}^{n} \sin k \theta=\frac{\sin \left[\frac{(n-1) \theta}{r}\right] \sin \left(\frac{n \theta}{r}\right)}{\sin \frac{\theta}{r}} \quad \theta \neq 0, \sin \pi
\end{aligned}
$$

$$
\begin{aligned}
& \text { i) } \sum \frac{\cos n \theta}{n^{\alpha}} \\
& \text { ii) } \sum \frac{\sin n \theta}{n^{\alpha}}
\end{aligned}
$$

$S_{n}=\sum_{k=1}^{n} \cos k \theta=\frac{\cos \left(\frac{(n-1) \theta}{r}\right) \sin \left(\frac{n \theta}{\Gamma}\right)}{\sin \left(\frac{\theta}{\Gamma}\right)}, \quad \theta \neq 0, r_{m} R \quad \dot{\Gamma} 1_{13}:$ (i) $N \sigma$

$$
n \bar{k}=1 \quad \sin \frac{\theta}{r}
$$

x

$\sum\left\{\frac{1}{(x+1)^{2}}+\frac{1}{(n+1)}+\cdots \frac{1}{(10 y)}\right\}=n_{n}^{\prime} n$

$$
i^{\prime}{ }^{\text {y }} \text {, bow }
$$

$$
b^{1}=6, \pi
$$

A power series about $\boldsymbol{x}=\mathbf{0}$ is a series of the form

$$
\sum_{n=0}^{\infty} c_{n} x^{n}=c_{0}+c_{1} x+c_{2} x^{2}+\cdots+c_{n} x^{n}+\cdots
$$

do
A power series about $\boldsymbol{x}=\boldsymbol{a}$ is a series of the form

$$
\sum_{n=0}^{\infty} c_{n}(x-a)^{n}=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+\cdots+c_{n}(x-a)^{n}+\cdots
$$

in which the center a and the coefficients $c_{0}, c_{1}, c_{2}, \ldots, c_{n}, \ldots$ are constants. $\sqrt{11}, \pi$

-
EXAMPLE A Geometric Series

$$
\begin{aligned}
& \sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+\cdots+x^{n}+\cdots . \\
& \text { : نـ } \\
& \frac{1}{1-x}=1+x+x^{2}+\cdots+x^{n}+\cdots, \quad-1<x<1 \text {. }
\end{aligned}
$$

$$
1-\frac{1}{2}(x-2)+\frac{1}{4}(x-2)^{2}+\cdots+\left(-\frac{1}{2}\right)^{n}(x-2)^{n}+\cdots
$$

$a=2, c_{0}=1, c_{1}=-1 / 2, c_{2}=1 / 4, \ldots, c_{n}=(-1 / 2)^{n}$.
a geometric series with first term 1 and ratio $r=-\frac{x-2}{2}$ ．
$\left|\frac{x-2}{2}\right|<1$ or $0<x<4$ ．The sum is

$$
\frac{1}{1-r}=\frac{1}{1+\frac{x-2}{2}}=\frac{2}{x}
$$

For what values of x do the following power series converge？
（a）$\sum_{n=1}^{\infty}(-1)^{n-1} \frac{x^{n}}{n}=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\cdots$
（v）$\quad\left|\frac{u_{n+1}}{u_{n}}\right|=\frac{n}{n+1}|x| \rightarrow|x|$ ．
－ハ川页，

$$
\text { : } 1 / 1 \quad x= \pm 1 \quad \leq|x|=1 \text { Eig }
$$

if $x=1 \Rightarrow$ the series is $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$ which converges
if $x=-1 \Rightarrow 11, \sum_{n=1}^{\infty} \frac{-1}{n}$ which diverges

(b) $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{x^{2 n-1}}{2 n-1}=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\cdots$

$$
\left|\frac{u_{n+1}}{u_{n}}\right|=\frac{2 n-1}{2 n+1} x^{2} \rightarrow x^{2}
$$

(c) $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots$

$$
\left|\frac{u_{n+1}}{u_{n}}\right|=\left|\frac{x^{n+1}}{(n+1)!} \cdot \frac{n!}{x^{n}}\right|=\frac{|x|}{n+1} \rightarrow 0 \text { for every } x
$$

$0<1$ U 4

(d) $\sum_{n=0}^{\infty} n!x^{n}=1+x+2!x^{2}+3!x^{3}+\cdots$

$$
\left|\frac{u_{n+1}}{u_{n}}\right|=\left|\frac{(n+1)!x^{n+1}}{n!x^{n}}\right|=(n+1)|x| \rightarrow \infty \text { unless } x=0
$$

If the power series $\sum_{n=0}^{\omega} a_{n} x^{n}=a_{0}+a_{1} x+a_{2} x^{2}+\cdots$ converges for $x=c \neq 0$, then it converges absolutely for all x with $|x|<|c|$. If the series diverges for $x=d$, then it diverges for all x with $|x|>|d|$.
 Ca

(r)

The convergence of the series $\sum c_{n}(x-a)^{n}$ is described by one of the following three possibilities:

1. There is a positive number R such that the series diverges for x with $|x-a|>R$ but converges absolutely for x with $|x-a|<R$. The series may or may not converge at either of the endpoints $x=a-R$ and $x=a+R$.
2. The series converges absolutely for every $x(R=\infty)$.
3. The series converges at $x=a$ and diverges elsewhere $(R=0)$.

For what values of x do the following series converge?
(a) $\sum_{n=1}^{\infty} \frac{x^{n-1}}{n \cdot 3^{n}}$, $\therefore \underbrace{}_{-} \bar{\beta}$

Then the interval of convergence is $-3 \leqq x<3$. The series diverges outisde this interval.
Note that the series converges absolutely for $-3<x<3$. At $x=-3$ the series converges con ditionally.
(b) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^{2 n-1}}{(2 n-1)!}$,

(c) $\sum_{n=1}^{\infty} n!(x-a)^{n}$,
(d) $\sum_{n=1}^{\infty} \frac{n(x-1)^{n}}{2^{n}(3 n-1)}$.
b)

$$
\lim _{n \rightarrow \infty}\left|\frac{u_{n+1}}{u_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(n+1)(3 n-1)(x-1)}{2 n(3 n+2)}\right|=\left|\frac{x-1}{2}\right|=\frac{|x-1|}{2}
$$

Thus, the series converges for $|x-1|<2$ and diverges for $|x-1|>2$.
For $x=3$ the series becomes $\sum_{n=1}^{\infty} \frac{n}{3 n-1}$, which diverges
For $x=-1$ the series becomes $\sum_{n=1}^{\infty} \frac{(-1)^{n} n}{3 n-1}$, which also diverges

$$
\sum_{n=r}^{\infty} \frac{(1+n)^{n}}{n!} x^{n}
$$

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}(x+2)^{n}}{n}
$$

$$
\text { v) } \sqrt[n]{\left|u_{n}\right|}=\frac{|x+r|}{\sqrt[n]{n}} \longrightarrow|x+r|
$$

- ;', es,
$x=-1 \Rightarrow \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$ converges
$n=-\psi \longrightarrow \sum_{n=1}^{\infty} \frac{1}{n}$ diverges

$$
(-\mu,-1] \quad ; \quad \text { - }
$$

1. $\sum_{n=0}^{\infty} x^{n}$
2. $\sum_{n=0}^{\infty}(x+5)^{n}$
3. $\sum_{n=0}^{\infty}(-1)^{n}(4 x+1)^{n}$
4. $\sum_{n=1}^{\infty} \frac{(3 x-2)^{n}}{n}$
5. $\sum^{\infty} \frac{(x-2)^{n}}{10^{n}}$
6. $\sum^{\infty}(2 x)^{n}$
7. $\sum_{n=0}^{\infty} x^{n}$
8. $\sum_{n=0}^{\infty}(x+5)^{n}$
9. $\sum_{n=0}^{\infty}(-1)^{n}(4 x+1)^{n}$
10. $\sum_{n=1}^{\infty} \frac{(3 x-2)^{n}}{n}$
11. $\sum_{n=0}^{\infty} \frac{(x-2)^{n}}{10^{n}}$
12. $\sum_{n=0}^{\infty}(2 x)^{n}$
13. $\sum_{n=0}^{\infty} \frac{n x^{n}}{n+2}$
14. $\sum_{n=1}^{\infty} \frac{(-1)^{n}(x+2)^{n}}{n}$
15. $\sum_{n=1}^{\infty} \frac{x^{n}}{n \sqrt{n} 3^{n}}$
16. $\sum_{n=1}^{\infty} \frac{(x-1)^{n}}{\sqrt{n}}$
17. $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n}}{n!}$
18. $\sum_{n=0}^{\infty} \frac{3^{n} x^{n}}{n!}$
19. $\sum_{n=0}^{\infty} \frac{x^{2 n+1}}{n!}$
20. $\sum_{n=0}^{\infty} \frac{(2 x+3)^{2 n+1}}{n!}$
21. $\sum_{n=0}^{\infty} \frac{x^{n}}{\sqrt{n^{2}+3}}$
22. $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n}}{\sqrt{n^{2}+3}}$
23. $\sum_{n=0}^{\infty} \frac{n(x+3)^{n}}{5^{n}}$
24. $\sum_{n=0}^{\infty} \frac{n x^{n}}{4^{n}\left(n^{2}+1\right)}$
25. $\sum_{n=0}^{\infty} \frac{\sqrt{n} x^{n}}{3^{n}}$
26. $\sum_{n=1}^{\infty} \sqrt[n]{n}(2 x+5)^{n}$
27. $\sum^{\infty}\left(1+\frac{1}{n}\right)^{n} x^{n}$
28. $\sum^{\infty}(\ln n) x^{n}$
29. $\sum_{n=1}^{\infty} \frac{(4 x-5)^{2 n+1}}{n^{3 / 2}}$
30. $\sum_{n=1}^{\infty} \frac{(3 x+1)^{n+1}}{2 n+2}$
31. $\sum_{n=1}^{\infty} \frac{(x+\pi)^{n}}{\sqrt{n}}$
32. $\left.\sum_{n=0}^{\infty} \frac{(x-\sqrt{2})^{2 n+1}}{2^{n}}-1\right)^{n}$
33. $\sum_{n=0}^{\infty} \frac{(x-1)^{2 n}}{4 n}$
34. $\sum_{n=0}^{\infty} \frac{(x+1)^{2 n}}{9^{n}}$
35. $\sum_{n=0}^{\infty}\left(\frac{\sqrt{x}}{2}-1\right)^{n}$
36. $\sum_{n=0}^{\infty}(\ln x)^{n}$
37. $\sum_{n=0}^{\infty}\left(\frac{x^{2}+1}{3}\right)^{n}$
38. $\sum_{n=0}^{\infty}\left(\frac{x^{2}-1}{2}\right)^{n}$

Abel's limit theorem.

If $\sum_{n=0}^{\infty} a_{n} x^{n}$ converges at $x=x_{0}$, which may be an interior point or an endpoint of the interval of convergence, then

$$
\lim _{x \rightarrow x_{0}}\left\{\sum_{n=0}^{\infty} a_{n} x^{n}\right\}=\sum_{n=0}^{\infty}\left\{\lim _{x \rightarrow x_{0}} a_{n} x^{n}\right\}=\sum_{n=0}^{\infty} a_{n} x_{0}^{n}
$$

If x_{0} is an end point, we must use $x \rightarrow x_{0}+$ or $x \rightarrow x_{0}-$

The Term-by-Term Differentiation Theorem

$$
\begin{aligned}
& : \text { 国 } \\
& f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n} \\
& \text { (il }
\end{aligned}
$$

$$
\begin{aligned}
& f^{\prime}(x)=\sum_{n=1}^{\infty} n c_{n}(x-a)^{n-1} \quad \frac{d}{d x}\left(\sum_{n=c}^{\infty} c_{n}(x-a)^{n}\right)=\sum_{n=0}^{\infty} \frac{d}{d x}\left(c_{n}(x-a)^{n}\right) \\
& f^{\prime \prime}(x)=\sum_{n=2}^{\infty} n(n-1) c_{n}(x-a)^{n-2},
\end{aligned}
$$

Find series for $f^{\prime}(x)$ and $f^{\prime \prime}(x)$ if

$$
f(x)=\frac{1}{1-x}=1+x+x^{2}+x^{3}+x^{4}+\cdots+x^{n}+\cdots=\sum_{n=0}^{\infty} x^{n}, \quad-1<x<1
$$

Solution

$$
\begin{array}{r}
f^{\prime}(x)=\frac{1}{(1-x)^{2}}=1+2 x+3 x^{2}+4 x^{3}+\cdots+n x^{n-1}+\cdots \\
=\sum_{n=1}^{\infty} n x^{n-1}, \quad-1<x<1 \\
f^{\prime \prime}(x)=\frac{2}{(1-x)^{3}}=2+6 x+12 x^{2}+\cdots+n(n-1) x^{n-2}+\cdots \\
=\sum_{n=2}^{\infty} n(n-1) x^{n-2}, \quad-1<x<1
\end{array}
$$

解 $\sum_{n=1}^{\infty} \frac{\sin (n!x)}{n^{2}}$ v/r Jhe Uor

$$
\frac{d}{d x}\left(\sum_{n=1}^{\infty} \frac{\sin (n!x)}{n^{2}}\right) \neq \sum_{n=1}^{\infty} \frac{d}{d x}\left(\frac{\sin (n!x)}{n^{2}}\right)=\sum_{n=1}^{\infty} \frac{n!\cos (n!x)}{n^{2}}
$$

- (-i)
.

Term-by-Term Integration
$f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n} \quad$ converges for $a-R<x<a+R(R>0)$. Then $\sum_{n=0}^{\infty} c_{n} \frac{(x-a)^{n+1}}{n+1}$ converges for $a-R<x<a+R$ and

$$
\int f(x) d x=\int\left(\sum_{n=0}^{\infty} c_{n}(x-a)^{n}\right) d x=\sum_{n=0}^{\infty} \int c_{n}(x-a)^{n} d x=\sum_{n=0}^{\infty} c_{n} \frac{(x-a)^{n+1}}{n+1}+C
$$

for $a-R<x<a+R$.

Example: Identify the function $-f(x)=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\cdots, \quad-1 \leq x \leq 1$.

$$
f^{\prime}(x)=1-x^{2}+x^{4}-x^{6}+\cdots, \quad-1<x<1 .
$$

$$
f^{\prime}(x)=\frac{1}{1-\left(-x^{2}\right)}=\frac{1}{1+x^{2}}
$$

$$
J(x)=\frac{}{1-\left(-x^{2}\right)}=\overline{1+x^{2}}
$$

$$
f(x)=\int f^{\prime}(x) d x=\int \frac{d x}{1+x^{2}}=\tan ^{-1} x+C
$$

$$
\text { ij } c=0 \text { u } f(0)=0 \quad 6 \quad x=0,
$$

$$
f(x)=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\cdots=\tan ^{-1} x, \quad-1<x<1
$$

酋 $f(x)=\operatorname{Ln}(1+x),-1<x \leqslant 1$ 让

مقدار سرى را بيابيد．$\quad s(x)=\frac{x^{r}}{1 \times r}+\frac{x^{r}}{r \times r}+\ldots+\frac{x^{n}}{(n-1) n}+\ldots \quad$.

$$
s^{\prime}(x)=x+\frac{x^{r}}{r}+\cdots+\frac{x^{n-1}}{n-1} \cdots \quad s^{\prime \prime}(x)=1+x+x^{r}+\cdots+x^{n}+\cdots
$$

$$
\begin{aligned}
& \therefore-x \text { (品 } 1 \text {, } \\
& \frac{1}{1+x}=\frac{1}{1-(-x)}=1-x+x^{5}-x^{2}+\cdots,-1<x<1 \\
& \left.\operatorname{Ln}(1+z)=\int_{0}^{z} \frac{1}{1+x} d x=x-\frac{x^{r}}{r}+\frac{x^{r}}{r}-\frac{x^{r}}{r}+\cdots\right]_{0}^{z} \\
& =z-\frac{z^{r}}{r}+\frac{z^{r}}{r}-\frac{z^{r}}{r}+\cdots \quad-1<z<1
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}=\operatorname{Ln}(T) \\
& \cdots \ln 1, \lim _{n \rightarrow \infty} n\left[1-n \cdot \log \left(1+\frac{1}{n}\right)\right] \sim 1 / 20 \text { (Uno }
\end{aligned}
$$

$$
\begin{aligned}
& \lim \theta_{n}=\lim n\left[1-n\left(\frac{1}{n}-\frac{1}{r n^{\tau}}+\frac{1}{\psi n^{\omega}}-m\right)=\lim n-n+\frac{1}{\tau}+\frac{1}{v^{n}}-\frac{1}{\Gamma n}+\cdots=\frac{1}{r}\right.
\end{aligned}
$$

$s^{\prime}(0)=0, \quad s^{\prime \prime}(x)=\frac{1}{1-x} \quad-1<x<1$

C 位 $\underbrace{2}_{-}$! $~ s(x)=\int_{0}^{x}-\ln (1-t) d t=(1-x) \ln (1-x)+x$

If $A(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ and $B(x)=\sum_{n=0}^{\infty} b_{n} x^{n}$ converge absolutely for $|x|<R$, and

$$
c_{n}=a_{0} b_{n}+a_{1} b_{n-1}+a_{2} b_{n-2}+\cdots+a_{n-1} b_{1}+a_{n} b_{0}=\sum_{k=0}^{n} a_{k} b_{n-k}
$$

then $\sum_{n=0}^{\infty} c_{n} x^{n}$ converges absolutely to $A(x) B(x)$ for $|x|<R$:

$$
\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \cdot\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)=\sum_{n=0}^{\infty} c_{n} x^{n}
$$

Multiply the geometric series $\sum_{n=0}^{\infty} x^{n}$ by itself to get a power series for $1 /(1-x)^{2}$, for $|x|<1$.

$$
\begin{aligned}
& A(x)=\sum_{n=0}^{\infty} a_{n} x^{n}=1+x+x^{2}+\cdots+x^{n}+\cdots=1 /(1-x) \\
& B(x)=\sum_{n=0}^{\infty} b_{n} x^{n}=1+x+x^{2}+\cdots+x^{n}+\cdots=1 /(1-x) \\
& c_{n}=\underbrace{a_{0} b_{n}+a_{1} b_{n-1}+\cdots+a_{k} b_{n-k}+\cdots+a_{n} b_{0}}_{n+1 \text { terms }}=\underbrace{1+1+\cdots+1}_{n+1 \text { ones }}=n+1
\end{aligned}
$$

$$
A(x) \cdot B(x)=\sum_{n=0}^{\infty} c_{n} x^{n}=\sum_{n=0}^{\infty}(n+1) x^{n}
$$

$$
=1+2 x+3 x^{2}+4 x^{3}+\cdots+(n+1) x^{n}+\cdots
$$

Taylor and Maclaurin Series

If a function $f(x)$ has derivatives of all orders on an interval I, can it be expressed as a power series on I ?

$$
\begin{aligned}
f(x) & =\sum_{n=0}^{\infty} a_{n}(x-a)^{n} \\
f^{\prime}(x) & =a_{1}+2 a_{2}(x-a)+3 a_{3}(x-a)^{2}+\cdots+n a_{n}(x-a)^{n-1}+\cdots \\
f^{\prime \prime}(x) & =1 \cdot 2 a_{2}+2 \cdot 3 a_{3}(x-a)+3 \cdot 4 a_{4}(x-a)^{2}+\cdots \\
f^{\prime \prime \prime}(x) & =1 \cdot 2 \cdot 3 a_{3}+2 \cdot 3 \cdot 4 a_{4}(x-a)+3 \cdot 4 \cdot 5 a_{5}(x-a)^{2}+\cdots
\end{aligned}
$$

$f^{(n)}(x)=n!a_{n}+$ a sum of terms with $(x-a)$ as a factor.

$$
\begin{aligned}
f^{\prime}(a)= & a_{1}, \\
f^{\prime \prime}(a)=1 \cdot 2 a_{2}, & \Rightarrow a=\frac{f^{\prime \prime}(a)}{2} \\
f^{\prime \prime \prime}(a)=1 \cdot 2 \cdot 3 a_{3}, & a_{3}=\frac{f^{\prime \prime \prime}(a)}{4!} \\
& \\
f^{(n)}(a)=n!a_{n}, & \Longrightarrow a_{n}=\frac{f^{(n)}(a)}{n!} .
\end{aligned}
$$

 در نقطه فا عبارت است از

$$
\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!}(x-a)^{k}=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}+\cdots
$$

سرى مكلورن تابع f عبارت است /ز

$$
\sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^{k}=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\cdots+\frac{f^{(n)}(0)}{n!} x^{n}+\cdots
$$

$$
\because 11 \bar{\infty} \frac{1}{x} \because(5, \operatorname{s} 6 x ; 1
$$

$$
\begin{array}{cl}
f(x)=x^{-1}, & f(2)=2^{-1}=\frac{1}{2}, \\
f^{\prime}(x)=2!x^{-3}, \quad \frac{f^{\prime \prime}(2)}{2!}=2^{-3}=\frac{1}{2^{3}}, & f^{\prime \prime \prime}(x)=-3!x^{-4}, \quad \frac{f^{\prime \prime \prime}(2)}{3!}=-\frac{1}{2^{4}}, \\
f^{(n)}(x)=(-1)^{n} n!x^{-(n+1)}, \quad \frac{f^{(n)}(2)}{n!}=\frac{(-1)^{n}}{n^{n+1}} .
\end{array}
$$

$$
f^{(n)}(x)=(-1)^{n} n!x^{-(n+1)}, \quad \frac{f^{(n)}(2)}{n!}=\frac{(-1)^{n}}{2^{n+1}} .
$$

$f(2)+f^{\prime}(2)(x-2)+\frac{f^{\prime \prime}(2)}{2!}(x-2)^{2}+\cdots+\frac{f^{(n)}(2)}{n!}(x-2)^{n}+\cdots$

$$
=\frac{1}{2}-\frac{(x-2)}{2^{2}}+\frac{(x-2)^{2}}{2^{3}}-\cdots+(-1)^{n} \frac{(x-2)^{n}}{2^{n+1}}+\cdots .
$$

$$
\therefore \quad \quad^{\prime} \frac{1 / 2}{1+(x-2) / 2}=\frac{1}{2+(x-2)}=\frac{1}{x} \quad \because 10<x<4 \underline{l}
$$

$\sum_{n=0}^{\infty} \frac{f^{(n)}(0) x^{n}}{n!}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{r}}{r!}+\frac{x^{r}}{r!}+\cdots+\frac{x^{n}}{n!}+\cdots$

. $\lim _{n \rightarrow \infty} \frac{x^{n}}{n!}=0 ، x$ ، بت~~

$$
\begin{gathered}
f(x)=\left\{\begin{array}{ll}
e^{-\frac{1}{x^{\top}}} & x \neq 0 \\
0 & x=0
\end{array} \quad \text { U he }{ }^{1} \dot{c} \sim\right. \\
f^{(n)}(0)=0 \text { for all } n \Longrightarrow \text { Taylor series generated by } f \text { at } x=0 \text { is } \\
f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\cdots+\frac{f^{(n)}(0)}{n!} x^{n}+\cdots \\
=0+0 \cdot x+0 \cdot x^{2}+\cdots+0 \cdot x^{n}+\cdots=0+0+\cdots+0+\cdots .
\end{gathered}
$$

The series converges for every x (its sum is 0) but converges to $f(x)$ only at $x=0$.
$P_{n}(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots+\frac{f^{(k)}(a)}{k!}(x-a)^{k}+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}$.

Taylor Polynomials for $\cos x$ at $x=0$

$$
\begin{aligned}
& f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{\prime \prime \prime}(0)}{3!} x^{3}+\cdots+\frac{f^{(n)}(0)}{n!} x^{n}+\cdots \\
& =1+0 \cdot x-\frac{x^{2}}{2!}+0 \cdot x^{3}+\frac{x^{4}}{4!}+\cdots+(-1)^{n} \frac{x^{2 n}}{(2 n)!}+\cdots \\
& P_{2 n}(x)=P_{2 n+1}(x)=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots+(-1)^{n} \frac{x^{2 n}}{(2 n)!} .
\end{aligned}
$$

these polynomials approximate $f(x)=\cos x$ near $x=0$.

1. $f(x)=\ln x, \quad a=1$
2. $f(x)=\ln (1+x), \quad a=0$
3. $f(x)=1 / x, \quad a=2$
4. $f(x)=1 /(x+2), \quad a=0$
5. $f(x)=\sin x, \quad a=\pi / 4$
6. $f(x)=\cos x, \quad a=\pi / 4$
7. $f(x)=\sqrt{x}, \quad a=4$
8. $f(x)=\sqrt{x+4}, \quad a=0$

Find the Maclaurin series for the functions in Exercises 9-20.
9. e^{-x}
10. $e^{x / 2}$
11. $\frac{1}{1+x}$
12. $\frac{1}{1-x}$
13. $\sin 3 x$
14. $\sin \frac{x}{2}$

Quadratic Approximations

The Taylor polynomial of order 2 generated by a twice-differentiable function $f(x)$ at $x=a$ is called the quadratic approximation of f at $x=a$. In Exercises 33-38, find the (a) linearization (Taylor polynomial of order 1) and (b) quadratic approximation of f at $x=0$.
33. $f(x)=\ln (\cos x)$
34. $f(x)=e^{\sin x}$
35. $f(x)=1 / \sqrt{1-x^{2}}$
36. $f(x)=\cosh x$
37. $f(x)=\sin x$
38. $f(x)=\tan x$

1. For what values of x can we normally expect a Taylor series to converge to its generaling function?
2. How accurately do a function's Taylor polynomials approximate the function on a given interval?
趾:

$$
f(b)=f(a)+f^{\prime}(c)(b-a)
$$

THEOREM 22 Taylor's Theorem

If f and its first n derivatives $f^{\prime}, f^{\prime \prime}, \ldots, f^{(n)}$ are continuous on the closed interval between a and b, and $f^{(n)}$ is differentiable on the open interval between a and b, then there exists a number c between a and b such that

$$
\begin{aligned}
f(b)= & f(a)+f^{\prime}(a)(b-a)+\frac{f^{\prime \prime}(a)}{2!}(b-a)^{2}+\cdots \\
& +\frac{f^{(n)}(a)}{n!}(b-a)^{n}+\frac{f^{(n+1)}(c)}{(n+1)!}(b-a)^{n+1}
\end{aligned}
$$

Taylor's Formula

If f has derivatives of all orders in an open interval I containing a, then for each positive integer n and for each x in I,

$$
\begin{align*}
f(x)= & f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots \\
& +\frac{f^{(n)}(a)}{n!}(x-a)^{n}+R_{n}(x), \tag{1}
\end{align*}
$$

where

$$
\begin{aligned}
& R_{n}(x)=\frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1} \quad \text { for some } c \text { between } a \text { and } x . \\
& f(x)=P_{n}(x)+R_{n}(x) .
\end{aligned}
$$

$$
\begin{aligned}
& e^{x}=1+x+\frac{x^{r}}{r 1}+\frac{x^{r}}{r_{1}}+\mathbb{R}_{r}(x) \\
& \frac{e^{e}}{k 1} x^{k} \cdot l-\frac{-}{1}!/ R_{r}(x)=\frac{f(c)}{k 1}(x-0)^{k} \quad \text { - }
\end{aligned}
$$

$!\left(-1 / \sim R_{r}(x)=\frac{f(c)}{k!}(x-0)^{k}\right.$
(.)

Equation (1) is called Taylor's formula. The function $R_{n}(x)$ is called the remainder of order \boldsymbol{n} or the error term for the approximation of f by $P_{n}(x)$ over I. If $R_{n}(x) \rightarrow 0$ as $n \rightarrow \infty$ for all $x \in I$, we say that the Taylor series generated by f at $x=a$ converges to f on I, and we write

$$
f(x)=\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!}(x-a)^{k}
$$

Show that the Taylor series generated by $f(x)=e^{x}$ at $x=0$ converges to $f(x)$ for every real value of x.

Solution The function has derivatives of all orders throughout the interval $I=$ $(-\infty, \infty)$. Equations (1) and (2) with $f(x)=e^{x}$ and $a=0$ give

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\cdots+\frac{x^{n}}{n!}+R_{n}(x)
$$

$$
R_{n}(x)=\frac{e^{c}}{(n+1)!} x^{n+1} \quad \text { for some } c \text { between } 0 \text { and } x .
$$

if $x \leq=\Rightarrow \exists c$ sit $x \leq c \leq 0 \Rightarrow e^{x} \leq e^{c} \leq 1$
if $x \geqslant 0,1 / 1,1, c \leq x \Rightarrow e^{a} \leq e^{c} s e^{x}$ thus :
$\left|R_{n}(x)\right| \leq \frac{|x|^{n+1}}{(n+1)!} \quad$ when $x \leq 0, \quad\left|R_{n}(x)\right|<e^{x} \frac{x^{n+1}}{(n+1)!} \quad$ when $x>0$.

$$
\lim _{n \rightarrow \infty} \frac{x^{n+1}}{(n+1)!}=0 \quad \text { for every } x
$$

$\lim _{n \rightarrow \infty} R_{n}(x)=0$, and the series converges to e^{x} for every x. Thus,

$$
e^{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}=1+x+\frac{x^{2}}{2!}+\cdots+\frac{x^{k}}{k!}+\cdots
$$

The Taylor Series for $\sin x$ at $x=0$
$f^{(2 k)}(x)=(-1)^{k} \sin x, \quad f^{(2 k+1)}(x)=(-1)^{k} \cos x$,

$$
\begin{aligned}
& f^{(2 k)}(0)=0 \quad \text { and } \quad f^{(2 k+1)}(0)=(-1)^{k} . \\
& \sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots+\frac{(-1)^{k} x^{2 k+1}}{(2 k+1)!}+R_{2 k+1}(x) . \\
& \left|R_{2 k+1}(x)\right| \leq 1 \cdot \frac{|x|^{2 k+2}}{(2 k+2)!} . \\
& R_{2 k+1}(x) \rightarrow 0
\end{aligned}
$$

Maclaurin series for $\sin x$ converges to $\sin x$ for every x. Thus,

$$
\sin x=\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k+1}}{(2 k+1)!}=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots .
$$

The Taylor Series for $\cos x$ at $x=0$

$$
\begin{array}{r}
\cos x=\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k}}{(2 k)!}=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots \\
\cos 2 x=\sum_{k=0}^{\infty} \frac{(-1)^{k}(2 x)^{2 k}}{(2 k)!}=1-\frac{(2 x)^{2}}{2!}+\frac{(2 x)^{4}}{4!}-\frac{(2 x)^{6}}{6!}+\cdots
\end{array}
$$

Find the Taylor series for $x \sin x$ at $x=0$.

$$
\begin{aligned}
& x \sin x=x\left(x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots\right)=x^{2}-\frac{x^{4}}{3!}+\frac{x^{6}}{5!}-\frac{x^{8}}{7!}+\cdots \\
& \text { Calculate } e \text { with an error of less than } 10^{-6} . \\
& e=1+1+\frac{1}{2!}+\cdots+\frac{1}{n!}+R_{n}(1)
\end{aligned}
$$

$$
\begin{aligned}
& R_{n}(1)=e^{c} \frac{1}{(n+1)!} \quad \text { for some } c \text { between } 0 \text { and } 1 .
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\frac{1}{9!}>10^{-4} \\
\frac{1}{1.1}<10_{0}^{-4}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& e=1+1+\frac{1}{2}+\frac{1}{3!}+\cdots+\frac{1}{9!} \approx 2.718282 .
\end{aligned}
$$

EXAMPLE 7 For what values of x can we replace $\sin x$ by $x-\left(x^{3} / 3!\right)$ with an error of magnitude no greater than 3×10^{-4} ?
the error in truncating $\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots$ after $\left(x^{3} / 3!\right)$ is no greater than

$$
\frac{|x|^{5}}{120}<3 \times 10^{-4} \quad \text { or } \quad|x|<\sqrt[5]{360 \times 10^{-4}} \approx 0.514 . \quad \begin{aligned}
& \text { Rounded down, } \\
& \text { to be safe }
\end{aligned}
$$

1. $e^{-5 x}$
2. $e^{-x / 2}$
3. $5 \sin (-x)$
4. $\sin \left(\frac{\pi x}{2}\right)$
5. $\cos \sqrt{x+1}$
6. $\cos \left(x^{3 / 2} / \sqrt{2}\right)$
7. $x e^{x}$
8. $x^{2} \sin x$
9. $\frac{x^{2}}{2}-1+\cos x$
10. $\sin x-x+\frac{x^{3}}{3!}$
11. $x \cos \pi x$
12. $x^{2} \cos \left(x^{2}\right)$
13. $\cos ^{2} x\left(\right.$ Hint: $\cos ^{2} x=(1+\cos 2 x) / 2$.)
14. $\sin ^{2} x$
15. $\frac{x^{2}}{1-2 x}$
16. $x \ln (1+2 x)$
17. $\frac{1}{(1-x)^{2}}$
18. $\frac{2}{(1-x)^{3}}$
19. For approximately what values of x can you replace $\sin x$ by $x-\left(x^{3} / 6\right)$ with an error of magnitude no greater than 5×10^{-4} ? Give reasons for your answer.
20. If $\cos x$ is replaced by $1-\left(x^{2} / 2\right)$ and $|x|<0.5$, what estimate can be made of the error? Does $1-\left(x^{2} / 2\right)$ tend to be too large, or too small? Give reasons for your answer.
21. How close is the approximation $\sin x=x$ when $|x|<10^{-3}$? For which of these values of x is $x<\sin x$?
22. The estimate $\sqrt{1+x}=1+(x / 2)$ is used when x is small. Estimate the error when $|x|<0.01$.
23. The approximation $e^{x}=1+x+\left(x^{2} / 2\right)$ is used when x is small. Use the Remainder Estimation Theorem to estimate the error when $|x|<0.1$.
24. (Continuation of Exercise 23.) When $x<0$, the series for e^{x} is an alternating series. Use the Alternating Series Estimation Theorem to estimate the error that results from replacing e^{x} by $1+x+\left(x^{2} / 2\right)$ when $-0.1<x<0$. Compare your estimate with the one you obtained in Exercise 23.
25. Estimate the error in the approximation $\sinh x=x+\left(x^{3} / 3!\right)$ when $|x|<0.5$. (Hint: Use R_{4}, not R_{3}.)
26. When $0 \leq h \leq 0.01$, show that e^{h} may be replaced by $1+h$ with an error of magnitude no greater than 0.6% of h. Use $e^{0.01}=1.01$.
27. For what positive values of x can you replace $\ln (1+x)$ by x with an error of magnitude no greater than 1% of the value of x ?
28. You plan to estimate $\pi / 4$ by evaluating the Maclaurin series for $\tan ^{-1} x$ at $x=1$. Use the Alternating Series Estimation Theorem to determine how many terms of the series you would have to add to be sure the estimate is good to two decimal places.
29. a. Use the Taylor series for $\sin x$ and the Alternating Series Estimation Theorem to show that

$$
1-\frac{x^{2}}{6}<\frac{\sin x}{x}<1, \quad x \neq 0
$$

T b. Graph $f(x)=(\sin x) / x$ together with the functions $y=1-\left(x^{2} / 6\right)$ and $y=1$ for $-5 \leq x \leq 5$. Comment on the relationships among the graphs.
30. a. Use the Taylor series for $\cos x$ and the Alternating Series Estimation Theorem to show that

$$
\frac{1}{2}-\frac{x^{2}}{24}<\frac{1-\cos x}{x^{2}}<\frac{1}{2}, \quad x \neq 0
$$

(This is the inequality in Section 2.2, Exercise 52.)

Find $\lim _{x \rightarrow 0}\left(\frac{1}{\sin x}-\frac{1}{x}\right)$.

$$
\begin{gathered}
\frac{1}{\sin x}-\frac{1}{x}=\frac{x-\sin x}{x \sin x}=\frac{x-\left(x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots\right)}{x \cdot\left(x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots\right)} \\
=\frac{x^{3}\left(\frac{1}{3!}-\frac{x^{2}}{5!}+\cdots\right)}{x^{2}\left(1-\frac{x^{2}}{3!}+\cdots\right)}=x \frac{\frac{1}{3!}-\frac{x^{2}}{5!}+\cdots}{1-\frac{x^{2}}{3!}+\cdots} .
\end{gathered}
$$

$$
\lim _{x \rightarrow 0}\left(\frac{1}{\sin x}-\frac{1}{x}\right)=\lim _{x \rightarrow 0}\left(x \frac{\frac{1}{3!}-\frac{x^{2}}{5!}+\cdots}{1-\frac{x^{2}}{3!}+\cdots}\right)=0
$$

$$
\begin{aligned}
& \frac{1}{1-x}=1+x+x^{2}+\cdots+x^{n}+\cdots=\sum_{n=0}^{\infty} x^{n}, \quad|x|<1 \\
& \frac{1}{1+x}=1-x+x^{2}-\cdots+(-x)^{n}+\cdots=\sum_{n=0}^{\infty}(-1)^{n} x^{n}, \quad|x|<1 \\
& e^{x}=1+x+\frac{x^{2}}{2!}+\cdots+\frac{x^{n}}{n!}+\cdots=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}, \quad|x|<\infty \\
& \sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots+(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}+\cdots=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}, \quad|x|<\infty \\
& \cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots+(-1)^{n} \frac{x^{2 n}}{(2 n)!}+\cdots=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}, \quad|x|<\infty \\
& \ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\cdots+(-1)^{n-1} \frac{x^{n}}{n}+\cdots=\sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^{n}}{n}, \quad-1<x \leq 1 \\
& \ln \frac{1+x}{1-x}=2 \tanh ^{-1} x=2\left(x+\frac{x^{3}}{3}+\frac{x^{5}}{5}+\cdots+\frac{x^{2 n+1}}{2 n+1}+\cdots\right)=2 \sum_{n=0}^{\infty} \frac{x^{2 n+1}}{2 n+1}, \\
& \tan -1 x=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\cdots+(-1)^{n} \frac{x^{2 n+1}}{2 n+1}+\cdots=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{2 n+1}, \quad|x| \leq 1
\end{aligned}
$$

Binomial Series

$$
\begin{aligned}
(1+x)^{m} & =1+m x+\frac{m(m-1) x^{2}}{2!}+\frac{m(m-1)(m-2) x^{3}}{3!}+\cdots+\frac{m(m-1)(m-2) \cdots(m-k+1) x^{k}}{k!}+\cdots \\
& =1+\sum_{k=1}^{\infty}\binom{m}{k} x^{k}, \quad|x|<1
\end{aligned}
$$

Find the first four terms of the binomial series for the functions in Exercises 1-10.

1. $(1+x)^{1 / 2}$
2. $(1+x)^{1 / 3}$
3. $(1-x)^{-1 / 2}$
4. $(1-2 x)^{1 / 2}$
5. $\left(1+\frac{x}{2}\right)^{-2}$
6. $\left(1-\frac{x}{2}\right)^{-2}$
7. $\left(1+x^{3}\right)^{-1 / 2}$
8. $\left(1+x^{2}\right)^{-1 / 3}$
9. $\left(1+\frac{1}{x}\right)^{1 / 2}$
10. $\left(1-\frac{2}{x}\right)^{1 / 3}$

Use series to evaluate the limits in Exercises 47-56.
47. $\lim _{x \rightarrow 0} \frac{e^{x}-(1+x)}{x^{2}}$
48. $\lim _{x \rightarrow 0} \frac{e^{x}-e^{-x}}{x}$
49. $\lim _{t \rightarrow 0} \frac{1-\cos t-\left(t^{2} / 2\right)}{t^{4}}$
50. $\lim _{\theta \rightarrow 0} \frac{\sin \theta-\theta+\left(\theta^{3} / 6\right)}{\theta^{5}}$
51. $\lim _{y \rightarrow 0} \frac{y-\tan ^{-1} y}{y^{3}}$
52. $\lim _{y \rightarrow 0} \frac{\tan ^{-1} y-\sin y}{y^{3} \cos y}$
53. $\lim _{x \rightarrow \infty} x^{2}\left(e^{-1 / x^{2}}-1\right)$
54. $\lim _{x \rightarrow \infty}(x+1) \sin \frac{1}{x+1}$
55. $\lim _{x \rightarrow 0} \frac{\ln \left(1+x^{2}\right)}{1-\cos x}$
56. $\lim _{x \rightarrow 2} \frac{x^{2}-4}{\ln (x-1)}$

Show that the Taylor series for $f(x)=\tan ^{-1} x$ diverges for $|x|>1$.

Express $\int \sin x^{2} d x$ as a power series.

$$
\begin{aligned}
& \sin x^{2}=x^{2}-\frac{x^{6}}{3!}+\frac{x^{10}}{5!}-\frac{x^{14}}{7!}+\frac{x^{18}}{9!}-\cdots \\
& \int \sin x^{2} d x=C+\frac{x^{3}}{3}-\frac{x^{7}}{7 \cdot 3!}+\frac{x^{11}}{11 \cdot 5!}-\frac{x^{15}}{15 \cdot 7!}+\frac{x^{10}}{19 \cdot 9!}-\cdots
\end{aligned}
$$

Estimate $\int_{0}^{1} \sin x^{2} d x$ with an error of less than 0.001 .

$$
\int_{0}^{1} \sin x^{2} d x=\frac{1}{3}-\frac{1}{7 \cdot 3!}+\frac{1}{11 \cdot 5!}-\frac{1}{15 \cdot 7!}+\frac{1}{19 \cdot 9!}-\cdots
$$

The series alternates, and we find by experiment that

$$
\frac{1}{11 \cdot 5!} \approx 0.00076
$$

is the first term to be numerically less than 0.001 . The sum of the preceding two terms

$$
\int_{0}^{1} \sin x^{2} d x \approx \frac{1}{3}-\frac{1}{42} \approx 0.310
$$

With two more terms we could estimate

$$
\int_{0}^{1} \sin x^{2} d x \approx 0.310268
$$

with an error of less than 10^{-6}. With only one term beyond that we have

$$
\int_{0}^{1} \sin x^{2} d x \approx \frac{1}{3}-\frac{1}{42}+\frac{1}{1320}-\frac{1}{75600}+\frac{1}{6894720} \approx 0.310268303
$$

$$
\begin{aligned}
& \tan ^{-1} x=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\cdots, \quad|x| \leq 1 \\
& \frac{\pi}{4}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\cdots+\frac{(-1)^{n}}{2 n+1}+\cdots . \\
& \sum_{n=1}^{\infty} \frac{(-1)^{n}}{r n+1}=\frac{\Pi}{r}
\end{aligned}
$$

Evaluate

$$
\begin{aligned}
& \lim _{x \rightarrow 1} \frac{\ln x}{x-1}=? \\
& \ln x=(x-1)-\frac{1}{2}(x-1)^{2}+\cdots
\end{aligned}
$$

$$
\lim _{x \rightarrow 1} \frac{\ln x}{x-1}=\lim _{x \rightarrow 1}\left(1-\frac{1}{2}(x-1)+\cdots\right)=1 .
$$

$$
11.1 .1 .321 \ldots 1.1_{n}^{-5}+1-1,1.1 \cdot \sin (32) \quad \text { 1.1. } 1,11^{2}
$$

$$
\begin{aligned}
& f(10 \pi)=\sin (10 \pi)=0 \\
& f^{\prime}(10 \pi)=\cos (10 \pi)=1 \\
& f^{\prime \prime}(10 \pi)=0 \quad, \quad f^{\prime \prime}(10 \pi)=-1, \cdots \\
& \Rightarrow \quad 0+(x-10 \pi)-\frac{(x-10 \pi)^{3}}{3!}+\frac{(x-10 \pi)^{5}}{5!} \cdots
\end{aligned}
$$

 ,

$$
\begin{aligned}
& P(32)=0.55143 \\
& \cdot 10_{5}^{-5} \text { il it bat } \sin (32) \approx 0.55143 U_{c}^{u}
\end{aligned}
$$

